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IIABSTRACT

The contents of this report concern with the work developed at the De-

partment of Physics of the University of Modena under the Contract DAJA45-

86-C-0004.

The first topic treated is quantum transport.Two major lines of research

have been investigated: the first is based on the introduction of the joint spectral

density into a traditional Monte Carlo simulation; the second regards the for-

mulation of a fully quantum mechanical approach for electron transport based

on the density matrix appioach.

The second deals with treats noise, diffusion, and autocorrelation functions

both from a theoretical and a simulative point of view. Results have been

obtained for both bulk systems and quantum wells.

The third topic concerns with an analysis of the effect of phonon popu-

lations in excess with respect to their thermal equilibrium values. Numerical

Monte Carlo simulations have been performed both for GaAs and for GaAs-

AlGaAs quantum wells.
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1. INTRODUCTION

This report presents technical matter related to the research performed

at the Department of Physics of the University of Modena for the Contract

Number DAJA45-86-C-0004 "Monte Carlo Analysis of Quantum Transport and

Fluctuations ;n Semiconductors". Such a Contract follows a similar Contract

with the same title relative to the period 1983/85.

In the Final Technical Report of that first Contract we reported a general

review of quantum approaches to charge transport in semiconductors; we there-

fore refer to that review for general references and for introductory treatment

of quantum transport.

In the present report we shall limit ourselves to the results of the research

performed under the Contract to which it relates. For the sake of completeness,

however, we shall sometimes include some materials developed during the first

part of ti1 is research.

In the presentation we shall follow the same order as in the Wcrk Statement

of the Contract. In particular, Chapters 2, 3, and 4 refer to the points 1, 2, and

3 listed as Objectives of the Research.

As it regards quantum transport, two major lines of activity have been

followed. In one of them, described in Sec.2.1, the traditional Monte C4rlo

approach has been extended to include the quantum features that could be

represented by the use of the joint spectral density in the transition probabilities.

The theory at the basis of this extension has been developed to a certain level

of detail in general, and in some special cases it has been fully developed up

to the realization of Monte Carlo codes for simple-model semiconductors(Sees.

2.1.4, 2.1.5).

In the second approach a method is developed for the numerical solution

of the Liouville-von Neumann equation that describes electron transport in



semiconductors in a fully quantum mechanical formulation. The problem has

been solved in principle, but the amount of computations necessary to obtain

the results for real cases of interest is still very large. The method is presented in

Sec.2.2. Two applications have been considered in particular: the analysis of the

effect of multiple collisions and of intra-collisional field effect in presence of high

applied electric fields (Sec.2.2.4.1), and the analysis of the energy relaxation of.

photoexcited electrons in absence of external fields (Sec.2.2.4.2).

A comparison of the two approaches presented in this report should stress

that the first one requires little modifications of the traditional Monte Carlo

technique,but some more investigations are required to understand how much of

the quantum features of electron transport it will be able to describe; the second

approach is more ri&zrous, but further analytical developments are required if

we want it to be useful for practical calculations.

As it regards the analysis of correlation fnctions of hot electrons (Chapter

3), two major lines of research have again been followed.

In the first work (Sec.3.1), explicit formulae have been obtained for the

time evolution of the velocity correlation functions which generalize the linear-

response theory to conditions far from equilibrium.

The second line of research (Sec. 3.2) has investigated the velocity corre-

lation function of electrons in semiconductor quantum wells under high applied

electric fields both in transient and in steady-state conditions.

Hot phonons, i.e. phonon populations in excess with respect to their

thermal-equilibrium values, can be obtained by means of the application of

strong electric fields or by photoexcited high-energy electrons with laser pulses.

This subject has recently collected large interest and debates. Chapter 4 con-

tains the description of the method developed by our group for a simultaneous

2



simulation of electron and phonon transport in bulk semiconductors and quan-

turn wells. Several applications are discussed in details for bulk GaAs and for

GaAs-AlGaAs quantum wells. Good qualitative agreement with Raman exper-

imental data is obtained.
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2.QUANTUM TRANSPORT

2.1 Inclusion of the Spectral Density in the conventional Monte Carlo

Approach

2.1.1 Introduction

The fast development in the field of submicron devices has provided a

renewed interest in the theory of electron transport beyond the free-particle

approach based on the ser iclassical Boltzmann equation. Indeed, quantum

theory has indicated that a proper treatment of high-field transport in semi-

conductors should include the intra collisional field effect (ICFE) as well as

collisional broadening (CB) [2.1].

ICFE accounts for the presence of the electric field in the collision operator

of the kinetic equation. In other words, a scattering event does not occur

between states described by the plane waves of a free electron, but between

those of an electron in the field. Introduced by Levinson and Yasevichyute

[2.21, ICFE has subsequently been investigated by many researchers [2.3 - 11].

Since the total Hamiltonian H is not the same as that of the perfect crystal,

an electron in a state with wave vector k is not in an eigenstate of H and does

not correspond to a well defined energy ?hw, but to a broad interval of energies

associated to k. The spectral function A(k,w) gives the probability that an

electron in state k is found with energy hw. It is possible to show that A(k,w)

represents also the probability that an electron with energy tuis found is state

k [2.12,13].

The effective mass model is recovered when A(k,w) = 27r6(h 2k2/2m - hw). CB

in the context of high-field transport in semiconductors was described in detail

by Barker [2.14] and its importance within a Monte Carlo simulation was firstly

pointed out by Capasso et al [2.151.
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Since then, several ,esearch groups J2.16 - 241 have attempted to esti-

mate the importance of these effects by suitable generalizations of standard

Monte Carlo algorithms. However, the technical details have been scarcely

documented. As a consequence, it has been practically impossible for anyone

outside a given research group to reproduce quantitatively the results obtained

by other groups. This, in turn, has led to contradictory findings and difficulties

in objectively assessing the sigrficance of the various quantum effects, and in

judging the relative merits of various calculat;ons.

The main objective of this section is thus to present the theoretical frame-

wotk and the detan. ef two Monte Carlo algorithms which we have used to estl-

mate TCFE and CB effects within a simple model semiconductor. Our scheme is

based on a quantum kinetic equation we have recently dr rived 12.251, and which

accounts for quantum effects through the introduction of the joint spectral den-

sity K(ci,r,) describing the connection betwren the initial, ci, and final, Ef,

kinetic energy of the carrier during a single scattering process. (Let us remark

that we are within the so called completed collision regime !2.11.25), which

enables us to construct time-independent scattering rates). The joint spectral

density reduces to the -vell known delta function behavior when ICFE or CB

are neglected. Therefore, the present scheme yields the correct semiclassical

Boltzmann limit. One of the objective of our study is to provide a first stan-

dard on the st,ject which hopefully will be of general use and open to further

improvements.

2.1.2 Model

The theory is formulated in terms of the Generalized Kadanoff-Baym ap-

proach (2.26, 271. Our physical model is based on the following assumptions:

(i) One isotropic band;

(ii) Time independent a id space homogeneous conditions;

5



(iii) An ansatz which links the single particle Wigner distribution function f(k)

to the full correlation function G< (k, t) [2.28] (G< (k, t) = iA(k, t)f(k- f Itl));

(iv) Completed collisions limit.

Within this model, the quantum kinetic Boltzmann equation for f(k) writes

[2.25]:

.f(k) =f dk' foM dt [WQM(k' - eEt/h,k - eEt/h)f(k' - eEt/h)

- WQM(k - eEt/h, k' - eEt/h)f(k - eEt/h)] (2.1)

The scattering probability per unit time WQM, for electron phonon interactions,

is given by:
1 1

WQM(kiLk 2 ) _ jV(q)12 (Nq + I + -17) K(k1,k 2 ) (2.2)
-2 2

where k(kl, k2 ) is the joint spectral density of the quasi particle which, in the

self-consistent Born approximation, is given by:
K 0,2 )= eE t l

jE drtk)-t') ezp(-iwqt')}K(ka,k2) = dt' 2Re{A(kI + e-it, t'A2+-t',-t) )X(i7Wt

(2.3)

The description of the physical processes is based on a quasi-particle picture,

where k and k' are the quasi particle kinetic momenta before and after a scat-

tering event, q = Ik-k ' is the transferred momentum, E is the external applied

electric field, JV(q) [2 the square of the matrix element for electron phonon col-

lision, Nq the equilibrium phonon population, hWq the phonon energy involved

in the collision, with r7 = ±1 referring respectively to emission and absorption

processes.

The joint spectral density K(k1 ,k 2 ) is the central quantity in our Pp-

proach, since it enables us to account for quantum corrections of the otherwise

semiclassical free-particle picture.

6



2.1.3 The Spectral Density

In the framework of a many-body approach which uses a the Green function

formalism [2.29], the spectral density is defined as:

A(k, t) = i[G'(k, t) - G' (k, t)] (2.4)

where G,a(k,t) is the retarded (advanced) Green function, respectively.

In the presence of a steady external electric field E and of collisions, G, (k, t)

obeys the Dyson's equation which, when expressed in terms of gauge invariant

variables, has the form:

Gr (k, t) = Cr(k, t)W + dt, dt2 G'_(k - eE ( )

E E feEE 2

X E (k - '(t 2 - tl),t - (tl + t 2 ))Gr(k - e- (t2 - t),t 2 ) . (2.5)

Er(k, t) is the retarded self energy. The field dependent retarded Green function

G"(k,t) is given by 12.261:

C(k, t)  -0(t ) exp [- i t/2

E~ f-t/ 2

where 0(t) is the unit step function, and c is the carrier kinetic energy.

An equivalent formulation of Eqs.(2.4-6) in the frequency domain can be

easily obtained through a Fourier transformation.

2.1.4 Applications

In the following, the explicit expressions for K(k,k') = K(cj,cf) will be

given for the case of ICFE and CB.
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2.1.4.1 Free Electrons with ICFF

For free electrons in the presence of an external electric field E the joint

spectral density is given by (2.301:
i r P2 [F PQ xi

- 2C( 'Q
'IQI'1  

\ 21QI ) [ (21Q 13 )12-

+ sin p2 [-2S( PQ (2.7)

with

P = ! - ci + hoWq; Q =--eq E, (2.8)

where C = C(z) and S = S(z) are the Fresnel integrals given by:

C(z) 2 (C j d OS(t 2); S(Z) = (2)! j dsi(t 2). (2)

Because.of the presence of fast oscillations associated to the Fresnel integrals in

Eq. (2.9) K(cg, ef, ) in the form of Eq.(2.7) cannot be used directly in a Monte

C rio scheme which requires a positive definite quantity. As suggested by Barker

[2.3], a plausible way of suppressing the oscillations (whose tails integrate to

zero) is to approximate the expression (2.7) with a Lorentzian function. In

order to preserve normalization and control the low and high energy tails we

use a truncation procedure: K(ci, el) = 0 for ef - 0 and e! 2! Tf, where Ef is a

cut-off energy. Thus, Eq. (2.7) is approximated by the following expression:

e ) = IA (2.10)
I# 11/ 2 1 + (z, - xf - xo - 7r6)2

where

A=[arctg(X- ,+zo+w -r - arctg(zo - x, + ?r-)] (2.11)

ME ( 1/2cOj - x 1/2 cose) (2.12)
( -2m-) /2 f oO-

mmmm~m mmm tam II - mllm m m m mmmmmmmmm lm aw mmmmm mmmm8



Here 8i and U, are respectively the initial and final angles of ki and kf with

respect to the electric field E and we introduce dimensionless energies by xi =

e,/I # 11/2, f = l/I l 11/2, I = -l/I /3 #1/2, Xo = hwoII 6 11/2. The final state

zf can be obtained by applying the direct technique [2.311 to Eq. (2.10). Once

xi, x 0 , if and 8 are given, xf is then found by generating random numbers r,

evenly distributed between (0,I), and using:

S= (zi - xo -- ) - tg[arctg(x, - xo - ir-) - r,. (2.13)
1/31 1/#3I A

Figures 2.1 - 2.3 show the joint spectral densities as obtained from Eq. (2.7)

(continuous curves) and the approximate expression (2.10) (dashed curves). As

is seen from Fig. 2.1 and 2.2, the presence of ICFE results in a broadening and

skewing of the original delta function. The skewness depends on the direction

of q with respect to E and the broadening can be so large that the final kinetic

energy of a carrier may be greater than the initial one, even if a phonon emission

process has occurred. (Note that for illustrative purposes in the figures we have

chosen the maximum q available in the process.) By decreasing the electric

field strength, the skewness and broadening reduce and the oscillations become

faster. Both Eqs. (2.7) and (2.11) recover a delta function shape for E = 0.

We point out that by generating 104 random numbers according to Eq.(2.13)

the distribution of xf is found to coincide with Eq. (2.11).

To introduce ICFE into a Monte Carlo program we suggest the following

procedure:

If ki is the wave vector before scattering then:

(a) generate the direction of the final k! assuming isotropic distribution;

(b) evaluate the magnitude of kf as in the absence of ICFE;

(c) evaluate / using the k! as in the absence of ICFE;

(d) generate x! from Eq. (2.13) and determine k! in the presence of ICFE

accordingly.

|9



The above procedure contains two weak points. First, the kf used to

calculate /3 is not consistent with the final kf and second, we must fix if

appropriately. The first point leads to an incorrect determination of the shift

of K(E,, fl) due to the electric field. However, since this shift is proportional to
ql/2 the error thus introduced should be practically irrelevant.

The second point is more serious. Allowing if to approach infinity leads

to carrier run-away and thus to a diverging mean kinetic energy, as evinced by

our simulations. Since this point is common to CB as well, we will comment on

it below.

2.1.4.2 Collisional Broadening

We shall confine our interest to the case where the scattering rate is a function

of hw only, because this is the only case that can be handled analytically (scat-

tering with non-polar optical, intervalley, and acoustic phonons under elastic

and energy-equipartition approximations are the corresponding cases of inter-

est [2.32]). By taking the self energy in the lowest order in the electron-phonon

coupling 12.171 we find 12.30):
1

(7r_)2 {( 2y.
(y - yo)/'/(y - 2yo)'/ 2O(yi, - yo)6(yf - yo)

[(y - y,)2 + (y - yo)]t(y - yo - yf) 2 + (y - 2yo)]

+ ,f6(z,, - yo) 0 (o - Yf)0(y)

(No + Yf - y), + Yf

+ 7r26(yo + Y - Y,)O(Yo - Y,)O(Yo - Yf)} (2.14)

where wc use dimensionless energies, y = hw/"', y, = C,/-Y2 , y, = /.y
2 ,

yo = hwo/y 2 , howo is the optical phonon energy. The parameter -y represents

the coupling strength in energy units. It is related to the usual deformation

10



potential constant DtK [2.321 by [1 = M3 /2 (DtK)2 /(2/ 2 rph 2Wo)I, where p is

the density of the material.

The joint spectral density of Eq. (2.14) is positive definite but it exhibits a-s/2
long tail for positive energies, where it decays as ef . An analytical expression

which approximates Eq. (2.14) accurately for yi , I>o (typically yi 5yo), and

controls the low and high energy tails (K(e,cf) = 0 for yf :_ 0 and y! _ g,

Ff = -I /y) is given by:

1/
K(,,) = 1B[ (y,_,yo)+4 (2.15)

with
= it-iyo "11 (2.16

B arctg( Y ) - arctg( y  - Yo (2.16)

1/2 2yi 1/22Yi

We find the final state yf, once yi, io and i are given, by generating y! as:

y =y.-io+2y r arctg( 214/) O (2.17)

where r is a random number uniformly distributed between (0,1).

Figures 2.4 - 6 show the joint spectral densities as obtained from Eq. (2.14)

(continuous curves) and the approximate expression (2.15) (dashed curves). As

a general trend the approximation improves for increasing values of the initial

kinetic energy (see Figs. 2.4 and 2.5). As can be seen from Figs. 2.5 and

2.6, the broadening increases for increasing -1 values, and it gives rise to carrier

run-away as in the case of ICFE. We point out that by generating 104 random

numbers according to Eq. (2.17) the distribution of y is found to coincide with

Eq. (2.16).

To introduce CB into a Monte Carlo program we suggest the following

procedure.

If ki is the wave vector before scattering, then:

11



V'.

(i) generate the direction of the final kf assuming isotropic distribution;

(ii) generate yf from Eq. (2.17) and determine kf accordingly.

The above procedure requires an appropriate choice for yf just as was the

case of ICFE.

2.1.5 Numerical Calculations

To investigate the main features of ICFE and CB we have performed Monte

Carlo simulations using 104 electrons for the simple model semiconductor char-

acterized by the three parameters m = 0.3mo (mo is the free electron mass),

wo 40meV and _2 1.1meV. The choice of these values can be considered

as typical for several cubic semiconductors. As a plausible choice, we have taken

the cut-off energy in dimensionless units as Tf = 2xi for ICFE and yf = 2yi for

CB, respectively.

Figures 2.7 to 2.10 display the energy distribution functions as obtained

in the presence of ICFE alone and CB alone for various different electric field

strengths. For the sake of comparison, we have also given the results for the

semiclassical case (SC) obtained by using a delta function for the joint spectral

density. (In order to facilitate a detailed comparison all the curves show the

direct Monte Carlo results).

For the high electric fields (500 and 100 kV/cm) the presence of ICFE and

CB is found to strongly increase the number of carriers in the high energy tail

of the electron distribution with respect to the SC case. We have also found

that, in general, CB is responsible for an increase in the population of the lower

energy region of the distribution function, while ICFE evidences an opposite

effect. At these high fields, the SC model is characterized by a heated Maxwell-

Boltzmann distribution, as expected within the quasi elastic regime [2.32[. In

particular, we notice that, for the present choice of parameters, ICFE gives a

slightly larger effect than CB.

12



For the low electric fields (10 and 5 kV/cm), the calculations show that the

effect of ICFE and CB becomes negligible (see Figs. 2.9 and 2.10), apart for

some minor effects of ICFE in the lower energy tail of the distribution probably

due to the approximate expression (2.13) used. At these low fields, the SC

model approaches the streaming motion regime" [2.32], where the distribution

function sharply drops to zero for kinetic energies larger than the optical phonon

energy.

Figure 2.11 shows the distribution of the energy difference between states

before and after a scattering event (Ac = ci - cf). With respect to the SC case,

for which AF = hwo, both ICFE and CB exhibit a broadened distribution which

reflect the joint-spectral-density model used in the simulation. In particular,

the two peaks for the case of ICFE are correlated to the skewness associated

with the forward and backward directions of q with respect to E..

Table 2.1 summarizes the values of the mean kinetic energy, the drift veloc-

ity, and the maximum kinetic energy achievable by a carreir during a simulation

for the different cases. At low fields SC and CB give the same results, within the

numerical uncertainty, while ICFE gives a value which deviates for about 20%,

with a larger mean energy and a smaller drift velocity than the SC case. These

deviations should be attributed to the scarce reliability of the model spectral

density at the lowest energies. At high fields the mean energy for ICFE and CB

is significantly larger (over 50% at 500 kV/cm) than for the SC case, reflecting

a higher population of the high energy tail of the distribution. Conversely, the

drift velocity change is limited to slight deviations, about 15%. However, an

increase in the value of the high energy cut-off ?f of the joint spectral density

has been found to be responsible for a systematic increase in the mean kinetic

energy. As a consequence, the maximum kinetic energy achievable by a carrier

during a simulation also increases together with its numerical uncertainty, and it

is clear that the computer time necessary for a simulation becomes unacceptably

13



long. This effect is shown in Table 2.2 for the case of ICFE at E = lOOkV/cm.

Analogous results have been found for the case of CB as well. Clearly this in-

crease of the mean kinetic energy is associated with a larger population of the

high energy tail of the distribution function. Therefore, we conclude that the

choice of the high energy cut-off is important for a quantitative evaluation of the

effects of both ICFE and CB. This is a crucial point for the present modeling

and, in our opinion, it has affected all previous calculations [2.16 - 24]. Thus,

physical justifications, which are outside the scope of this paper, are needed to

overcome this drawback.

2.1.6 Conclusions

We have presented a theoretical framework which enables one to account

for genuine quantum effects for the case of hot-electron transport in semiconduc-

tors. The main quantities of interest are the spectral density and the associated

joint spectral density which can include ICFE as well as CB. After providing

the general theory , analytical models for these quantities have been obtained

in some cases of interest. When quantum effects are neglected, that is carriers

behave as a free particle between two scatterings, the semiclassical Boltzmann

picture with the collision term determined from the golden rule is recovered.

We have presented two algorithms, compatible to standard Monte Carlo codes,

for estimating quantum effects, such as intra-collisional field effects and colli-

sional broadening, in semiconductor high-field transport. The basic feature of

these algorithms is to model joint spectral densities replacing the Dirac function

which, within a semiclassical approach, conserves the kinetic energy within a

scattering event. The methodology chosen by us has been given with details, so

that it may constitute a first standard which can be easily reproduced and/or

improved by other research groups. The broadening of the final energy after
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a scattering event, which is associated to these models, yields in general a sig-

nificant increase of the population in the high energy region of the distribution

function. Accordingly, the concept of a broadening assisted run-away effecty

has been introduced. However, because of their long tails at high energies,

these joint-spectral density models need an "ad hoc" truncation to avoid an

unpractical (and unphysical) blowing up of the mean kinetic energy. Because of

this, in turn, the quantitative results may depend on the choice of the empirical

cut-off energy. To overcome this drawback, which has received some attention

in the recent literature [2.331, more appropriate physical models, such as relax-

ing the simple effective mass model for the density of states [2.34], should be

introduced. We shall address this issue in our further research.

2.2 A Monte Carlo Approach to the Solution of the Liouville-von

Neumann equation for quantum transport

2.2.1 Introduction

In the last decades the Monte Carlo method [2.31] has proved to be a

formidable tool for the solution of charge-transport problems in semiconductors.

It provides a simple way to solve the semiclassical Boltzmann transport equation

once the band structure and the scattering mechanisms are sufficiently well

known. From its original formulation [2.351 it has been greatly improved in

efficiency and it has been extended to cover a large variety of problems such as

space or time-dependent systems, interacting electrons, degenerate statistics or

even device modelling.

However, the very fast evolution of miniaturization techniques for semicon-

ductor technology is leading very rapidly towards experimental conditions where

typical lenghts are of the order of the De Broglie wavelenght of the carriers, and

typical times are comparable with carrier relaxation times [2.11. In particular,
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in modern laser spectroscopy a time resolution has been achieved of the order

of 101 femtoseconds. If the system is observed at a time of this order after it

has been "prepared", transitions may be observed that would not be allowed

by energy conservation. In other words, the quantum interference phenomena

that produce the 6 of energy conservation are not yet complete at so short

observation times.

It is clear that the classical transport theory, based on Boltzmann equation,

is not adequate for the description of the physical processes that are taking place

on this time scale. In fact, semiclassical transport is based on the hypothesis,

among others, that each scattering event is completed when the next one starts.

For the validity of such an assumption it is necessary that the coupling between

electrons and the scattering agents is sufficiently weak so that a first-order

perturbation theory can be applied, and this must be done in the limit of

"completed collisions" so that energy conservation holds at each interaction

process.

Several possible approaches have been presented for attaching the problem

of quantum charge transport [2.11.

A new Quantum Monte Carlo (QMC) procedure has been recently devel-

oped 12.36] for the solution of the Liouville equation for ihe electronic density

matrix in semiconductors. The principles of the method will be summarized in

Sects. 2.2.2 and 2.2.3.

In Sec.2.2.4.1 we present an analysis of the first two perturbative corrections

in presence of an arbitrary high electric field, and in Sec. 2.2.4.2 the method is

applied to the problem of energy relaxation of photoexcited electrons in GaAs

in absence of electric field.
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In the semiclassical limit our quantum equation recovers the semiclassical

Boltzmann equation, and the numerical procedure results to be a new formu-

lation of the traditional Monte Carlo procedure [2.371. The semiclassical limit

of the procedure is described in Sec. 2.2.5.

The method allows to evaluate the electronic density matrix as a func-

tion of time without any assumptions on the intensity and the duration of the

electron-phonon interaction. The quantum equation is solved through a ran-

dom generation of all possible quantum interactions at the various perturbative

orders, in the same way as the usual Classical Monte Carlo (CMC) generates

classical scattering events [2.361.

2.2.2 Physical System and Theoretical Approach

In order to study the properties of charge transport in a quantum scheme,

let us consider an ensemble of electrons in a semiconductor crystal, coupled to

the phonon gas. Carriers are assumed to be not interacting with each other, so

that the interaction of one carrier with the phonons will represent the behaviour

of the whole electron gas. The electron band structure is introduced in the

effective-mass approximation, with a simple spherical and parabolic band.

The Hamiltonian of the system is given by

H = H. + HE + Hp + Hep (2.18)

where He = 2 is the term corresponding to an electron in a perfect crystal

(m= effective mass); HE = eE r describes the electric field turned on at t=O;

Hp = F, hqat4q describes the free-phonon system in the second-quantization

formalism (at and aq are the creation and annihilation operators of a phonon

mode q). The electron-phonon interaction Hamiltonian Hep, turned on at t 0,

depends on the scattering mechanisms included in the model.
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We have not explicitely introduced any interactions among phonons and

between phonons and the thermal bath. In the numerical procedure, however,

we will assume that these interactions can mantain an equilibrium phonon pop-

ulation during the evolution of the system.

In order to work in the interaction representation, we use the set of basis

functions

I kdr.(},t) = . (2.19)

'IV

that include the time dependence due to the unperturbed Hamiltonian H. +

Hp + HE. They are direct products of electronic accelerated plane waves, with

k(t) = k. - t, normalized to 1 over the crystal, and the phonon states

*({fnq}) with nq phonons in mode q with frequency Wq. The state I ') of the

system can be expanded over this set as:

I E) = E c(k,{nq},t) Ik,{nq},t) (2.20)

Ik (,nq}

If we now consider to the density matrix of the system in the representation

of the set in Eq.(2.19):

p(k, {nq},k', {n'},t) = (c(k, {nfq}, t)c(k', {n), t)), (2.21)

the Liouville-Von Neumann equation that describes its time evolution contains

only the perturbation Hamiltonian:

ih Op(X, X', t) = [H/., p](XX', tj), (2.22)

where we have used the symbolic compact notation X = (k, {nq})

A formal integration leads to

p(X,X',t) = p(XX',0) + ] dt I MJ,p](X,X',t1 ), (2.23)
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'where )te = 1 ffp. If we are interested in the evaluation of expectation values

of electron quantities which are diagonal in the electronic part of the states in

Eq.(2.19), we can focus our attention on the diagonal elements p(Xt) of p.

Furthermore, we will assume a diagonal initial condition for p decoupled

in electron and phonon coordinates. This is justified by the fact that the inter-

action is turned on at t=O. The electronic part is taken as some distribution

function ., while the phonon part is assumed as the probability Peq({n,}) of

finding each mode q occupied by nq phonons at equilibrium:

p(k, {nq}, 0) =/o(k) • Peq({nq}) (2.24)

A perturbative expansion of Eq.(2.23) is easily obtained by iterative sub-

stitution of its right-hand side into the equation itself:

p(X,t) = p(X,O) + dtI[t(t),p(o)1(X)+

.00+ dtl dt2[)'Cp[tI), [Xp(t2),p(O)Jl(X) + ..

= P()(X, t) + A,(1)(X,t) + Ap( 2)(X,t) + ... (2.25)

The zero-order term in the expansion corresponds to the case of no coupling

between electrons and phonons, and it is equal to the initial condition for p.

In order to proceed with the theory we note that the pertubation Hamil-

tonian has the form

H.P = F(q)aq iq r - ae-'ir} = Hob + Hem, (2.26)
q

where Hat and Hem refer to phonon absorption and emission, respectively. The

matrix element of HP between X and X' contains only the mode q related to

k and k by momentum conservation and it is different from zero only if the
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number of phonons in the mode q is changed by a unity going from X to X',

since it contains only linear terms in aq e at

The explicit form of the first-order correction is:

Lp(1)(X t) = dtj{1 P(XX',tj)P(°)(X'O) - )1"P(XXtj)P(O)(XO)}.

(2.27)

From what we have seen about the matrix elements of Hep, it is clear that the

above first-order term gives no contribution to the diagonal elements of p since

we assumed diagonal initial conditions. It can be shown that the same is true

for all odd-order corrections.

The second-order term can be rewritten, using the property

4P (X, X', t) - - 1 'P (X', X, t), (2.28)

as

AP (2 )=(X, t) dtf di2 {),p (X, X', t1))4 P (X', X, t2)p(X, o)
+Xep(X

+)1.p(XX',ti)p(X',X,t)p(X,O) + ),p(X,X',ti))4p(X,X',t 2)p(X',O)

+ lep(X, X', ti):p(XX', t2 )p(X', 0)} (2.29)

There is a simple and useful way of reading the above equation. At t = 0 the

two arguments of p are equal; by application of Mep (or )*P) the first (or the

second) argument of p is changed from the second argument of lep to the first

one; at t the two arguments of p are again equal (to X). Since each application

of M4p changes the phonon state of one unity, in order to start from a diagonal

element and end up to another diagonal element a mode q absorbed (or emitted)

by one argument is to be absorbed (or emitted) also by the other argument or

reemitted (or reabsorbed) by the same argument. Using the language of the
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field theory, we refer to the first kind of processes as to "real" emissions and

absorptions, while the other ones are "virtual processes".

Thus, the contributions to be included in the second order in M4 p are those

illustrated in Fig. 2.12.

With the above interpretation it is very siinple to generalize the results

to higher-order terms of the perturbative expansion. For example, Fig.2.13 is

the diagramatic representation of the following contribution to the fourth-order

term:

,,, (X, X', t,)1 b(X, X"', t2 ).e,, (X", X", t3 )),. (X", X', t4)p(X', O) (2.30)

Each "process" in these graphs corresponds to a single scattering event in

classical transport. To recover the classical golden rule it should be necessary

to integrate one of the two times of the process, without interfering with other

processes, over an interval large enough to obtain the 6 of energy conservation.

From the analysis of these graphs of the perturbation expansion for p, we

can focuse our attention to some important aspects of the quantum description.

The quantum transitions have a finite duration, during which carriers experience

the action of the electric field (ICFE). This effect is obviously not present in

the semiclassical description where collisions are point-like. Only after a certain

time we obtain again a diagonal state that corresponds to a semiclassical state

of the system; during the interaction the system is in a quantum state given

by a superposition of k states which does not correspond to any semiclassical

situation. Furthermore, while one process is happening, a new one can start,

giving rise to multiple collisions and vertex corrections.

Let us now introduce the reduced electronic density matrix, which is the

quantity of interest in charge-trasport phenomena and it can be considered the
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quantum analogue of the classical distribution function. It is defined as the

contraction over phonon states of the total density matrix:

p()(k, k', t) - p(k, {nq,k', {nq}, t) (2.31)

The evolution equation for p(e) still contains the dynamical variables of the

many-body system. In fact it is not possible to obtain a closed equation for

p(e) by taking the trace of Eq.(2.23) for the full density matrix since the trace

operation does not commute with the interaction Hamiltonian. The reduction

of the total density matrix to the electron density matrix can instead be easily

performed in the numerical QMC procedure introduced in the following section

in order to evaluate the series in Eq.(2.25).

2.2.3 Numerical Procedure

The numerical QMC algorithm devised for the solution of Eq.(2.22) is

essntially based on random generations of all possible processes associated with

the different perturbative corrections.

From the fundamentals of the Monte Carlo technique [2.381 it is known that

for the evaluation of a sum S = -- xi , one can consider the estimator l, where

pi 's are arbitrary probabilities between zero and one normalized to unity, and

average it over random selections of the i index, made with probabilitis pi This

procedure is here used to obtain an estimate of Eq.(2.25): random selections

with suitable probabilities determine

i. the order of the perturbative correction to be estimated;

ii. one of the possible contributions to the corresponding integrand;

iii. the wavevectors q of the phonons involved in the quantum interactions

of that contribution. Due to momentum conservation of the Hep matrix

elements, these selections determine the argument ki. of p at t=O.
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The quantity:

' d, ... -- ' dt , (t,) ... P(t ) •p (k , ,t = 0), (2.32)
P

where P is the total probability of all the selections that have been made, is

then averaged over many generations and it gives an estimate of p at time t.

In this way we obtain the density matrix and he average values of the

physical quantities of interest for our system through a random generation of

quantum processes as we obtain the carrier distribution function and transport

quantities from a random choice of carrier histories in the traditional Monte

Carlo technique.

There is however a crucial point that requires to be analised, which is

how we perform the average over the phonon variables. As we already pointed

out, we assume an initial condition for p which is the product of an electron

distribution function times the equilibrium phonon distribution; furthermore

the interaction Haniltonian is linear in the creation and annihilation operators

of the modes q.

In the numerical procedure we saw that a sequence of process is gener-

ated starting from an initial state (kim, {nqin, 0) which terminates on the state

(k, (nq), t). This sequence corresponds to a sequence of phonon wavevectors q

which are absorbed or emitted on the first or on the second index of the density

matrix. We can assume that each phonon mode is chosen only once in a given

process, i.e. the electron always interacts with an equilibrium phonon bath. If a

phonon q is absorbed in a certain transition and the corresponding occupation

number at time t is nq, the occupation number of the initial state is nq + 1, and

the interaction hamiltomnian Mep must contain the factor ,(-q + 1) because it

contains the operator aq. In order to finish the process )4 p must act two times,

and the numerical estimator will contain the multiplicative factor nq + 1.
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In the same way, if we have the emission of a mode q, and the corresponding

final cccupation number is nq, then the initial occupation of this mode must bc

nq - 1, and the numerical estimator will contain a factor nq.

At the end of the random generation we obtain for the 2n-order correction

Ap(e)(2n)(k,t) an estimator of the form

Ap(e)()(k, t) = (constant) fo(kin) • (F- Nq' . Pq(nin)) (2.33)
(n. 1 q* q

where nqin is the occupation number of the mode q in the initial state and

Nq. is the multiplicative factor generated by the interaction hamiltonian for

the phonon modes q* involved into the generated sequence. The average (...) is

performed over several generations of terms for a given perturbative order 2n.

If a phonon q is not chosen, then the sum over all possible occupation

numbers nq of P(nq) must be equal to unity:

P(nrqin) = 1 (2.34)

and this factor does not contribute to the product in Eq. (2.33).

If instead we consider a q* chosen in the random generation, we have two

possible case. In the case of absorption:

-'((nq. + l)P(nq- + 1)) = nq.)Boc, (2.35)
n,. .

where nq.)Bose is the equilibrium occupation number given by the Bose distri-

bution.

In the case of emission:

E-((nq.)P(nq. - 1)) nq.)Bo,, + 1 (2.36)
n,2
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In both cases we have finally to use the Bose distribution for the evaluation

of the term with, nt irtroduring any approximations on the ehLctron-plhonon

coupling, but for the assumption that the phonon gas is constantly kept in

equilibrium conditions.

2.2.4 Results

2.2.4.1 Analysis of First and Second Orders in Presence of Electric Fields

The second order perturbative correction in the interaction hamiltonian

involves only one of the processes discussed above. The explicit form of the

corresponding integrals in Eq.(2.25) is of the type:

fo t dt , fo dt2e{ ib(t t-t2)+d(tI' -t2)}

b = 2(wf - Wi - wq) (2.37)

Here i and f refer to the interacting initial and final electron states and wq is the

phonon frequency. This simple expression allows a direct analytical integration

in terms of Fresnel integrals. The final expression of the second order correction

after integration is:

~r a~b b2 atb b2
4--at+b _ C(b + [S(a )s()] (2.38)

In the above equations the coefficient a accounts for the effect of the field dur-

ing the finite duration of the collision, while b is related to the energy of the

quantum states involved in the transition.

This formulation allows us to investigate separately the new features in-

troduced by the quantum treatment of the interactions. In particular, we can
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turn off the ICFE by neglecting the effect of the field between two vertices of

the process.

Results for the first two perturbative terms have been obtained starting

from equilibrium conditions for the electron and phonon system, and both

electric field and electron-phonon coupling are turned on at t=O. In Fig.2.14

we compare the absolute value of the second order correction as given from

Eq.(2.38) with the same contribution without ICFE. In the same figure we

report also the corresponding classical contribution to the perturbative expan-

sion of the classical integral equation for the distribution function obtained

from the Boltzmann equation [2.371. This classical correction comes from "one-

scattering" trajectories and the corresponding contribution is always negative,

due to the prevailing scattering out. These numerical results have been obtained

for a simple-model Eemiconductor (relative effective mass m =.295, crystal den-

sity d=2.33 g/cm 3, one optical phonon scattering with T.1 = 350K, and cou-

pling constant D=2.5.10 9eVcm - ' ). The working conditions (T=20 K, E=I50

kV/cm, t=5.xlO-1 4 s) have been choren in such a way that quantum effects

can be easily detectable.

When we neglect the ICFE, we get a higher effect of the "quantum one-

collision" trajectories. In fact the ICFE, by changing the energy of the carrier

during the collision, reduces the efficiency of the scattering since it reduces the

time of positive interference which occurs when the energy difference between

initial and final states is equal to the phonon energy [2.39]. The classical con-

tribution is even higher; such effect can be interpreted by noting that the field

is so high that even at such short times the electrons can reach enough energy

for classical instantaneous phonon emissions, while the time is so short that

quantum transitions, with finite durations, are not yet fully developed.
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An improvement in the efficiency of the method can be obtained also at

higher orders by integrating over time every other vertex between the two ad-

jaent verteces. The result is again expressed in terms of Fresnel integrals.

If we allow only processes that do not overlap (the two verteces of one given

processes correspond to adjacent times) we negl~ct multiple collisions, and by

comparison we may analyse their effect.

Finally we may neglect the effect of the field in the interference exponentials

and analise in this way the ICFE in the two-scattering trajectories. In this last

case the integration of one vertex leads to the functions like atn(bt) which would

lead to the delta of energy conservation for large times; in our case however

the completion of the transition is not necessarily reached if the time interval

considered is very short.

We show in Fig.2.15 the quantum corrections of the fouth perturbative

order (which is now larger than zero) compared with the classical two-scattering

contribution for the same model as in Fig.2.14. The quantum result is lower

than the classical term as for the second order contribution, due again to the

short time available for the interaction. When we allow only separate collisions

(Fig.2.15c), the corresponding term appears somewhat higher. This result can

be due to the fact that the two separate collisions allow for a higher contribution

of transitions which do not conserve energy, even though the phenomenon still

requires further investigation.

If we turn off the ICFE, we see that the whole curve is still higher and

much closer to the classical one, as it happens for the second order term.

Finally in Fig.2.16 we report results for the density matrix in the case of

a more realistic set of parameters that gets closer to a simplified silicon model.

We changed the phonon temperature (T=450 K) and the coupling constant

(D=.8x 109 eV/cm). The electric field is E=15 kV/cm and the time is t=.5 ps.
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In this case we found that the ICFE is much lower than in the previous case

due to the lower field strength.

Since the time is larger, the effect of multiple collisions is also lowered, and

we expect that this effect influences higher order corrections.

2.2.4.2 Quantum Energy Relaxation of Photoexcited Carriers in Absence

of Electric Fields

When electric fields arp absent (HE = 0) time integrations can be per-

formed analytically. For example, the second-order contribution due to a real

emission of a phonon in mode q is given by the first two graphs on the left in

Fig.2.12, which are complex conjugate of each other. The integration yelds

2)Z dtl dt2 (X,t l I XE I X',tl)(X,t2 I ME I X',t2).

= 2X{jJ0 dtr dj , I F(q) 12 (nq + 1)ei6wt e _ i6wt2}
-2 1 F(q) f2 (q±1

&2(w()2 q +1)(1 - cos( wt)), (2.39)

where R indicates the real part, and bw = w(k) - w(k') + wq. Similar results

are obtained for other contributions and for higher-order terms. It is not easy

to give general formula since the form of the result depends on the particular

diagram considered.

The method described in the previous sections has been applied to the case

of photoexcited electrons in bulk GaAs. The semiconductor model has been

simplyfied to a single spherical, parabolic band. The interaction Hamiltonian

includes only polar coupling to optical phonons; for such a case

I F(q) 12= 2re2hw. 1 1 ) (2.40)
Vq2  E0
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where w. is the frequency of the optical phonons, assumed constant, V is the

volume of the crystal, e and c. are the high frequency and the static dielectric

constants.

Electrons are generated at t = 0 according to a distribution proportional

to eXp(I C - fo 12 /(KBT), where c is the electron energy and c. and Ti are

appropriate constants

Terms up to fourth order have been included in the numerical computa-

tions. For such a reason the simulation time has been kept < 100ps. For longer

times, higher perturbative orders would have been necessary.

For comparison results have been obtained for the same model at the same

times in semiclassical transport, using an Ensemble Monte Carlo (EMC) tech-

nique.

The following parameters have been used: m = 0.063m.; hwoIKB = 410K;

T = 10K; Ti = 10K; c,, = 10.92; ro = 12.9; co/KB = 1000K

Fig.2.17 shows the results obtained with EMC at t = O.1pS after excitation.

The echos are clearly seen corresponding to electrons having emitted one or two

optical phonons. About 30 % of the particles have left the original peak.

Fig.2.18 shows the corresponding result obtained with quantum transport

theory (note the scale change). The initial distribution is diminished of a quan-

tity very similar to that of the classical case. However, electrons can be found,

at t = 0.1ps, in a very wide range of energies, since energy needs not to be

conserved. The secondary peaks are not yet well formed. High energies are in

fact favored in the distribution at time t by the larger density of states and by

the q- 2 factor in Eq.(2.40). Thus the energy relaxation predicted by quantum

transport theory is less than that predicted by classical transport for t < 0.1ps

as shown in Fig.2.19.
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2.2.5 Semiclassical Limit: Backward Monte Carlo Procedure

The semiclassical limit of the theoretical approach described in the pre-

vious sections is obtained when: i) we neglect ICFE; ii)we assume that the

time between two collisions is much longer than the collision duration, so that

during each collision energy is conserved; iii) the phonon population is always

mantained at equilibrium, and the average occupation number is given by the

Bose distribution.

Under these conditions the integral perturbative equation for the density

matrix reduces to the Boltzmann equation written in an analogous integral form

with the collision term expanded at the same perturbative order.

The semiclassical limit of the Quantum Monte Carlo gives a basically new

M.C. method for the solution of the Boltzmann equation, which results as the

classical limit of the method developed for the solution of the Liouville equation

for quantum transport 12.361.
The technique described here differs from the traditional M.C. method in two

major respects: 1). The occurrence of particular electron histories with given

scattering events is arbitrarely selected in the procedure and appropriately

weighted in the estimator. 2). The electron state k at which the distribu-

tion function is evaluated at time t is chosen at the beginning of the procedure

and the electron paths are generated backward in time from t to the time t=O

of the (known)initial condition. This second feature seems to be not inherent

to the method which should be suitable also for a normal forward simulation.

However the fact that the value of k at which f is evaluated is fixed arbitrarely

makes the method particularly appealing for problems where rare regions of f

are of particular interest. The two features indicated above may suggest the

names "weighted M.C." or "backward M.C." for the procedure introduced here.
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2.2.5.1 The Method

Let us start from the standard form of the B.E. For semplicity we shall con-

sider here a homogeneus system, with a homogeneus and constant applied field

E, but the method should be easely generalizable to space and time dependent

phenomena.

8 +k f(r,k,t) - V / dkP(klk)f(rkt)-

)V ] dk 1P(k, k)f(r,k,t) (2.41)(27r I

Here Pi and P0 indicate the same transition probability from a state k to

state k1 ; the suffixes i and o are intended to spcify IN or OUT scattering,

respectively, for future reference. If the path variables k' = k - 't are used

and a formal integration is performed, the Boltman Equation takes the form of

an integrM equation that can be iteratively expanded in powers of the scattering

probability.

f(k, t) = fo + fl + f2 +... (2.42)

f°(k, t) = f'(k(O),O)

f 2(k, t) = J dt / dkPi(k,k(t))f(k(O),O)-

J d 2,)3.

V2r_ f dt, j dk, P.(k(tl,,k (k(O),O0)

P 2(k, t) fdt, V2 ) dkje,(kj,k(t,))

/dt, 2-- V jdk2Pi(k2,ki(t2))f(k2(O),O)

J d2~)s~ f dkP,(k,,k(t1 ))Jdt2 2V 3 Jdk2 P(k (t2),k 2 )f(k (O) , O)

I dtl- V fdkPo(k(t),kl)Jdt2( 2V)s fdk 2 P,(k,k(t))f(k(O),O)
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+ dti 2 ~ dkiP0,(k(t,),k 1 ) Jdt y f2r) dk2P.(k(t2.,k 2)f (k(0), 0)

(2.43)

Here k(t) is the value of k moved back to time t .

The-zero order term, fO, which corrisponds to the absence of interaction, is

the ballistic translation of f during the interval (O,t), due to the action of the

external electric field. The first order term f-1 rapresents the contribution of

electrons that suffered one scattering event between t=0 and t=t. Here, the first

integral, or 'IN' term, is due to electrons that at time ti have a collision from

k1 to k(tl)at time t. The second integral or 'OUT' term, is due to electrons

that are scattered out from the ballistic trajectory and do not reach the state

(k,t) and reach k at time t. An interpretation like this can be carried on to all

the other terms. An example of a third order term is shown in Fig. (2.20).

Eq. (2.20) gives f formally as an infinite sum. A possible M.C. technique for

the evaluation of a sum S = F xi is the following: we select values of i at

random with arbitrary probabilities pi such that pi > 0 and E pi 1 and

make the estimator Zi/pi so we have

= pi-. = S (2.44)
Pi/ Pi

The method can be extended to the evaluation of an integral: if we consider a

multiple integral like those in Eq (2.20) then

d,! df(i 2 -,t)=v < f >= ~> (.5J ... dtnf(t,t...,tn) n < f(t tn) > (2.45)

where the mean value is evaluated over the possible choices of the set

(t1 ,t 2,...,tn) and v is the volume of integration.

If we apply the above method for the evaluation of the sum in Eq (2.20) the

following procedure could results: I) the perturbative order n of the term to be

evaluated is chosen first; 2) n times, between t = 0 and the time t of simulation,
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are then generated; 3) then, starting from the final state (k, t) we have to move

k backward in time with free flights from each ti to the previous one ; 4) at each

ti we choose between scattering IN or OUT and the scattering mechanism (for

example, in our case where we consider only scattering by one optical mode,

we chose between emission or absorbtion ; 5) if at time tj an OUT scattering

is chosen the integration over the final states is performed analytically, and the

current k is ktpt to continue the simulation; if an IN scattering is chosen an

initial state is chosen, at random in the surface of energy conservation, and this

new k is used to continue the simulation; 6) the previous two points are repeated

until t = 0 ; 7) the initial distribution is evaluated at k j (0) and multiplied by

the product of the transition rates for the simulated path and divided by the

probabilities of the choices selected in the simulation.

However, a change can be introduced in the above algorithm giving a more

physical and fast evaluation of f. In fact all terms containing any number

of OUT scattering events between two given IN scattering can be summed

up analitically. Let us consider, for example, the term containing two OUT

scattering events

J dt, f dkiP.(k(ti),ki)Jfdt2 f dk2 P1(k(t 2 ),k 2 )f(k(o),o) (2.46)

Since the integrals are symmetric with respect to the echange of the time vari-

ables, Eq (2.26) can be reduced to:

f(k(O),O)} J dt f dkP 0 (k(t,),k,) J dt2 f dkPo(k(t 2),k 2

-o Ii[f dtPo(k,t)) 2
2!

where P,(k,tl) is the scattering probability integrated over all possible final

states.
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If we sum all such contribution the result is the exponential series:

fo.- {f° f dt1 P,(k,t 1 )} + {folIf dtP,(k,tl)]2 ....

fOexp{- / dtPo(ki,t)} (2.47)

Where now exp f dt1 P0 (k,ti) is the probability of no scattering between the

times 0 and t. new term is the ballistic term moltiplied by the probability that

an electron has not had a scattering in the time interval (0, t).

The same argument can be applied to sum up analytically all OUT terms

between two given IN events. The result is that for any pair of IN terms at times

t, and t 2 the estimator must be moltiply by the probability exp{- f dtPo(k, t)},

that an electron is not taken away from the trajectory by an OUT scattering.

The procedure sketched above is then to be modified in that only IN scat-

tering events are to be considered and the no-scattering probabilities due to

out scattering added to the estimator. Such a change results in an enormous

improvment of the convergence since we move from a series with alternate signs

to a series of positive terms.

2.2.5.2 Results

The above method has been applied, for testing purposes, to a simple model

semiconductor based on silicon. A simple spherical parabolic band is used and

only one optical phonon scattering is considered. For such a model the integral

in equation (2.47) can be easily performed analytically. The following physical

parameters have been used: effective mass-.295, phonon temperature= 450'K,

coupling constant 0.8 109 V/cm,density=2.329cm - 3 
. Figs (2.21) and (2.22)

show the results.

Fig (2.21) shows the distribution function obtained at different times at the

initial application of the electric field E= 10KV/cm. While for t 0.5ps the
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curve is complete with terms up to fifth order, for t = 1.5ps we had to include,

for convergence, terms up to the 12th order. (path with up to 12 scattering

events contribute to the distribution function) In Fig (2.22) the distribution

function is shown as a function of energy. A sampling of final k values in the

energy sphere had to be performed. Results of the new method are compared

with a traditional (EMC) performed with 2.4 106 particles. The curves in the

figure show how many orders contribute to the final shape of the distribution

function.

Several problems could be discussed about the efficiency of the method

proposed here.In particular it is to be considered that if the probabilities (the

pi's that appear in Eq (2.22)) are not appropriately chosen the advantage of

selecting the final k is lost by the fact that most of the times the initial ki,

where the source function f(kI (0), 0) is to be evaluated, falls into regions where

f is very small and the variance would result very large. A smart choice of

the pi's for every particular problem will greatly improve the efficency of the

method.

Finally we would like to remind that the method should be applicable also

to space dipendent problems; in particular it could be very useful to analyse the

problem of electrons injected into the semiconductor material from a metallic

contact. In the traditional M.C. very long paths (and computations) correspond

to electrons wandering around in the metal before entering the semiconductor

space. On the contrary, with the present procedure only paths ending in the

desired region are analysed.
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Figure Captions

Fig. 2.1 - Joint spectral density accounting for ICFE as a function of the kinetic

energy after a scattering event. Continuous and dashed lines refer respectively

to the exact and approximated expressions reported in the text for an initial

energy e = 1eV. with E = 500kV/cm, and q antiparallel to E.

Fig. 2.2 The same as Fig. 2.1 with q parallel to E.

Fig. 2.3 The same as Fig. 2.1 with E = 1OOkV/cm, and q parallel to E.

Fig. 2.4 - Joint spectral density accounting for CB as a function of the kinetic

energy after a scattering event. Continuous and dashed lines refer respectively

to the exact and approximated expressions reported in the text with 12 =

1.1meV.and for an initial energy ci = 1eV.

Fig. 2.5 - The same as Fig. 2.4 with e, = 0.2eV.

Fig. 2.6 - The same as Fig. 2.5 with 2 = 0.11meV.

Fig. 2.7 - Distribution function of the carrier kinetic energy at E = 500kV/cm.

Dashed curve refers to a semiclassical (SC) simulation, continuous curve to

a simulation which includes collisional broadening (CB) only, and dot-dashed

curve to a simulation which includes intra-collisional field effects (ICFE) only.

Fig. 2.8 - The same as Fig. 2.7 at E = 100kV/cm.

Fig. 2.9 - The same as Fig. 2.7 at E = lOkV/cm

Fig. 2.10 - The same as Fig. 2.7 at E = 5kV/cm
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Fig. 2.11 - Distribution function of the difference between the initial and final

kinetic energy after a scattering event (At = ej - ef) as obtained from Monte

Carlo simulations for the case E = 500kV/cm. The vertical line at Ac =

Awo represents the delta distribution of the semiclassical case. The continuous

(dashed) curves refer to CB and (ICFE), respectively.

Fig.2.12 - Diagrams representing the second order contributions to the density

matrix. The horizontal axes represent the time for the two arguments of the

density matrix and arrows indicate phonon absorption and emission processes.

Fig. 2.13 - Diagram representing the fourth-order contribution to the density

matrix shown in Eq.(2.30).

Fig. 2.14 - Absolute value of quantum corrections at the second perturbative

order conpared with the absolute value of the classical one-scattering correction

for the model semiconductor (see text). (a) classical one-scattering contribution;

(b) quantum correction of the second perturbative order; (c)the same as in (b)

without ICFE.

Fig. 2.15 - Quantum corrections at the fourth perturbative order compared

with the classical two-scattering correction for the model semiconductor (see

text). (a) classical two-scattering contribution; (b) quantum correction of the

fourth perturbative order; (c) the same as in (b) with separate collisions; (d)

the same as in (c) without ICFE.

Fig. 2.16 - Density matrix to zero-order (a), to second-order (c), and to fourth-

order (b) perturbative correction for the silicon-like model (see text).
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I

Fig.. 2.17 - Classical distribution function of electrons as a function of energy

at a time t = 0 .1ps after excitation. The highest peak at 1000K is the initial

distribution at t = 0.

Fig. 2.18 - Quantum distribution function of electrons as a function of energy

at a time t = 0 .1ps after excitation.

Fig. 2.19 - Mean electron energy as a function of time, obtained with quantum

transport theory (continuous line) and classical theory (dashed line).

Fig. 2.20 - A possible trajectory of third order with two IN scatterings and one

OUT scattering.

Fig. 2.21 - Electron distribution as a function of wavevector k at different times

afetr the application of the electric field (a: t=O; b: t=0.1 ps; c: t=0.5 ps; d:

t=1. ps; e: t=1.5 ps).

Fig. 2.22 - Electron distribution as a function of energy obtained at time t=1.

ps after the application of the electric field. Continuous curves represent results

obtained by summing orders up to 10th (a), 13th (b), 16th (c), 19th (d), 25th

(e). E= 10 s V/cm.

40



Figures

41



ECO

- jj

ILI

LU la

CM C ~ 0

E (1)

FI.0.



K (e1 , Cf) (e v')

K) 0

CD,

MCl)

* 0
* mjo

s FIG. 2.2



I CM

I-

0w c

0o co

FIG. 2.3



If

CML

FIG. 2.4



I I o
0

c'A'

LOp

FIG. 2.5



U)e

II 0

C0 cJi U

(L-A W -

FIG. 2.6



E 500 ky/cm

-*- -*- ICFE 1

3 0 '3 CB

10

0 1020304
(e V

FIG 2.



3

--* *-*- ICFE

ICB

1 20

0

10 N.N

10O
0 0.5 11.5.2

C (eV)

FIG. 2.8



3i

*I-

3 1 : 
-..

10 E = 10 kV/cm

ICFE

2 CB

0 .10

CF1

0 0.04 0.08 0.12 0.16

C (eV)

FIG. 2.9



3~E 5 kV/cm

ICFE

CB

i 2

-~- 10

0 0.04 0.08 0.12 0.16

C (e V)

FIG. 2. 10



- 12 * i ' * ,

0 E =500 kV/cm

ICFE

CB

8

6

4N.;4 -**/ \,\

/ '
2/

.0
-1.2 -0.8 -0.4 0 0.4 0.8 1.2

AC (eV)

FIG. 2.11



x x x x x

X \,x : x x

x1 x Y.

x 12

FIG. 2.12



3s X1  X'"

t4  13 t

X1

FIG. 2.13



40

(ai
30. (C)

(b)
~20-

co

10

0.8 1.0 1.2 1,4

K 1 7io cm )

FIG. 2.14



24

16 (al
- (d

- - (C)

.8 

(b)

0.8 1.0 1.2 1.4
0

4 - K11  (10 cm )

I FIG. 2.13



30

(a)

Cd 20 (C)

17 (b)
10

0
1.0 1.2 1.4

FIG. 2.16



.0

tL

eI41

FIG. 2.17



S0

1:l0. 00 30.00 50. 00 20. 00 90.00 110.00

C- R-y /10K (K)

FIG. 2. 18



Cb) 00 00 ~.0 8:0 100

CDl (~

FI.<.1



S(k~t)

FIG. 2.20



f 1-21 M3

d

.5 11,5 2

~(ev)

FIG. 2.21



.%(1- 19 C3

5
a b

3

2

e

05 1 1.5 k(10 cTl)

FIG. 2.22



Tables

41b



TABLE 2.1

E <(> Vgd Cmaz

(kV/cm) (eV) (lO7 cm/S) (eV)

0.015 1.05 <1 SC

5 0.018 0.86 <1 ICFE

0.015 1.06 <1 CB

0.019 1.06 <1 SC

10 0.022 0.86 <1 ICFE

0.019 1.08 <1 CB

0.13 1.33 49 SC

100 0.020 1.07 59 ± 1 ICFE

0.15 1.38 110 + 13% CB

2.5 1.41 1200 ± 5% SC

500 4.7 1.23 2200 : 40% ICFE

3.9 1.65 3850 + 13% CB

Table 2.1 - Summary of the carrier mean kinetic energy < c >, drift velocity Vd,

and the maximum kinetic energy achievable by a carrier during a simulation

maz corresponding to the various joint spectral density models at different

.electric field strengths. The uncertainty of the numerical results is within +2%

-if not -stated otherwise.



TABLE 2.2

Xf Vd fa

(CV) (0C/) (v

2z, 0.20 1.07 59

4xi 0.29 0.98 121

8x 0.54 0.93 508

Table 2.2 - Dependence of the mean values and of the maximum kinetic energy

achievable by a carrier during a simulation Ema, z upon different values of the

cut-off energy for the case of ICFE at E = 100kV/cm



3.CORRELATION FUNCTIONS OF HOT-ELECTRONS

3.1 Correlation Functions for Bulk Semiconductors

3.1.1 Introduction

Since the work of Green and Kubo , the use of the velocity autocor-

relation function has been proven to be a fundamental tool for the description

of the kinetic coefficients under linear response condition in an applied external

field. Near equilibrium, the velocity autocorrelation function represents the mi-

croscopic quantity which unifies the pfi~'sical interpretation of both the mobility

is and diffusivity D (fluctuation-dissipation theorem). This is no longer the case

under far from equilibrium conditions, when a static electric field E externally

applied is sufficiently high to produce hot-electron effects.

Under far from equilibrium conditions it is possible to introduce a set of

correlation functions which still enables a unified interpretation of the transport

coefficients. In the following sections we will present theoretical developments

and results for bulk materials.

3.1.2 Equations of Motion for a Closed Set of Correlation Functions

Following the results of Niez [3.1-31 we use a first principle Heisenberg pic-

ture to write the equations of motion for the required quantities, in our case

energy and momentum. By a projection operator technique, the thermodynam-

ical motion is separated from the fluctuations. Taking for simplicity a single

spherical and parabolic band model semiconductor, it has been proven [3.3]

that four correlation functions, which couple velocity and energy fluctuations,

.are needed. These can be written in matrix notation as:

0..(t) d(t)\ < vSv(t) > <6 v6c(t) >(3.1)
k ,.(,)(t) t) < 6v(t) > < Wc(t) >

The set in Eq. (3.1) is found to satisfy the following closed system of coupled
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first order differential equations:

W dOv = -G12 o. { jtd-- -v (3.2)

40.. -C20v-a2. 4c -a2lvvu CL22t'e

where the coefficients cr, (which depend on the external field but not on time)

describe the microscopic properties of the physical system. These coefficients

come from the general theory [3.3] when the relaxation time approximation is

used. Then, all the slow components of the system dynamics, such as the total

energy and momentum, are taken care of by the projection operator used. The

kernels of the Langevin-like convolution integrals obtained in this framework

are rapidly varying functions [3.4], and the aiy are just their time integrals.

The physical meaning of the diagonal terms al 1 and a 22 is related to the mo-

mentum and energy relaxations rates. The off-diagonal terms a12 and a 21 are

zero at equilibrium (E = 0) when, as known, the relaxation of momentum and

energy are independent. Under hot electron conditions these rates are no longer

independent and the off-diagonal terms describe the coupling between them. A

microscopic determination of the ai coefficients remains a formidable problem

which has not been yet considered. The analytical solution of Eqs. (3.2) in

normalized form is given by:

... °.........

W2 > 0
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O'.(t) = - {21[woch(wot) + (A - all)sh(wot) + [(A - a 1 1)2 
- o2]sh(wot)}

Oe(t)= -Wo {woch(wot)[(A - all) + a21jsh(wot)]}

'O.{& 2 [lwoch(wot) + (A - a l)shfc'ot)l + [(A - alt) 2 
- wt1.sh(wot)}

a2lWO

g(t) = -- {twoch(ot)t(A - all) + &2l9h(wot)]}

(3.3a)

W02 < 0

°...... ....

&-( {621[WOCOS(Wot) L-( aii)sin(wot)] + (A-a) 2  2 ~sn~o)

owe(tW = -W{WOCO~SPwOO)A - all) + C12ijsin(,,ot)]}

.w= 4- Atj 2 i[UwOCOS(UwOt) + (A - oaii)sin(wjot)] + (A-a) 2 w]i~o)
a2Iwo 

a,2+W~i~c)

c-At

{wocos(wo)(A - all) + &2 ijsin(wot)]j}
(3.3b)

where A = 1/2(ci, + a 22 ) , O - (all - a22) + al2a2, , =

< 6v6E >/< bv2 >; _y = < b6te >/< 6E2 >; 521 = a21/J8 ; &21 = a21 "y. We

notice that A and wo are two frequencies which characterize the main features of

the time evolution of the correlation functions. As a matter of fact A , which is

always real, is responsible for a damping, while wo, when imaginary, determines

an oscillatory behaviour.
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3.1.3 Numerical Results

To check the reliability of the functional form given by Eqs. (3.3), we have

prepared an Ensemble Monte Carlo simulation for the two following cases of

interest.

(i) Quasi elastic regime: This condition corresponds to a carrier momentum

distribution function with the even part dominating over the odd part. We have

considered here scatterings with acoustic and non-polar optical (or intervalley)

phonons at 300 K for a simple model semiconductor (Si-like with E //< 111 >

[3.5]).

(ii) Streaming motion regime: In this condition the odd part of the distri-

bution strongly prevails over the even part. To this purpose, with respect to

the previous case, the optical phonon coupling has been arbitrarily increased

(by a factor 5) at 77 K.

The results for the above regimes are shown in Figs. 3.1,2, where the data

obtained from the simulation are found to agree quite satisfactorily with the

analytical curves (we notice that a similar agreement has been obtained at

various filed strengths from 5 to 200 kV/cm). In particular the quasi elastic

regime is characterized by A > Iwol , while the streaming motion regime by

A < Iwo . In the latter case, in agreement with the expectations 13.6], the re-

lationship wo = (2?r/e)E(2mthw,,) -4/2, hwOo being the optical phonon energy

and m a carrier effective mass, has been verified within the numerical uncer-

tainty. Figure 3.3 shows the depedence with electric field of the Oai coefficients

for the case of quasi elastic regime.

Having succeded in deriving a set of equations describing the evolution of the

correlation functions of the thermodynamical variables (v,-), we consider now,

in the same theoretical framework, the basic ideas which underlie the linear

response theory around the steady state. We thus apply to the system an

extra perturbative electric field El (t). The Hamiltonian is now time dependent,
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and we focus on the thermodynamical differences between the steady state

values of our variables and their values induced by E1 (t). By repeating for the

present case the calculations that led to Eqs. (3.3), it appears that the equation

which drives the momentum of the system gives, as it is well known, the first

fluctuation-dissipation theorem only when E = 0, Le. in the near equilibrium

situation. If E = 0 one comes with the so-called "dressing term" TE [3.51, which

characterizes the dissipative nature of the steady state. We have been able to

evaluate TE and to give its espressions in terms of the coefficients driving the

dynamics of the correlation functions of the thermodynamical variables only.

After some delicate algebra (which will be published later), one can write

(-iw + a) (6 < C> (W) = NEI (w){ (1/rn) - CE[((P 1l

d(( 2,2)-,LI,,2 2

where the notation of Niez t3.31 has been used. In Eq. (3.4) the indices I

and 2 correspond respectively to the velocity and the energy of the electronic

system; furthermore vd is the steady-state drift velocity. The a coefficients

are the same as in Eq. (3.2). The dressing term (second term in the squared

braces) has been evaluated taking into account that the collision time rc is much

shorter than any time describing the dynamics of the relevant variables. In TE,

the (P; P)L correlation functions of energy and momentum at time t = 0 are

defined through the displaced Maxwellian distribution of the problem. The -

coefficients in TE are directly related (through a mass factor m) to the first

moments of the collision kernels [3.3] for their definition):

y(i,j) - dt t[Go(t)(1 - fl-) Ai,L ; (1 - 11.) A',L]J (3.5)

Thus from Eq. (3.4) it is possible to give the complex differential mobility/jt (W)

of the system through information coming from the correlation functions of the
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thermodynamical variables only. While an explicit formula for U' from Eq.

(3.4) is currently in progress, its expression when the dressing term is neglected

(i.e. under warm electron conditions) is given by:

e 2A-!Ji(36
p'() = - 2 2 ] (3.6)

M (A -iW) -Wo

3.1.4 Microscopic Expression of the Noise Temperature

Under far from equilibrium conditions due to the presence of a uniform

electric field E, the noise associated with velocity fluctuations is commonly

described by the noise equivalent temperature T, a physical quantity which

can be easily measured [3.61. When two particle interactions are neglected and

the system is electrically stable (i.e. /4' > 0 , ' being the differential mobility),

a generalized Einstein relationship was proven to hold for T, 13.71:

Tn = eD (3.7)

=KBAL

Here e is the unit charge, KB the Boltzmann constant and D the diffusion

coefficient.

The objective of this section is to provide for the first time a microscopic

expression for T,. The essence of our result relies on the proof that both D and

1', and therefore T., can be defined from the same set of correlation functions

flescribing the system under far from equilibrium conditions.

To this end we shall consider Eq. (3.6) in the limit w -- 0 and obtain:

e, 2A---cio (3.8)

We recall that Eq. (3.8) is still an approximation since it neglects the so-called

"dressing term" of Ref. 13.31, which comes from the dissipative nature of the

steady-state. This limits the reliability of the present theory to fields below 20

1W/cm.
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From the definition of D in terms of [3.61 we obtain the desired defini-

tion of the noise temperature in terms of the aij coefficients as:

Tn = Ke -0".(Ot) (3.9)

Figure 3.4 shows the comparison between this theory and experiments [3.8] of

the excess noise temperature for the case of electrons in Si. The agreement

found is good and supports the present interpretation of the noise temperature

in terms of correlation functions.

In summary, explicit formulae have been obtained for the time evolution of

a closed system of correlation functions which generalized the linear response

theory to the far from equilibrium case (hot electrons). This theory provides a

unified microscopic interpretation of both diffusion (given by the Fourier trans-

form of 0,,(t)) and mobility. At zero field our formulation coincides with the

first form of the fluctuation-dissipation theorem. Therefore, the present theory

can be viewed as a generalization of the Kubo formalism under far from equi-

librium conditions. As such, we have proven that this formalism consistently

interprets numerical simulations, as obtained through standard Monte Carlo

procedure, for a variety of physical situations and experimental results.

3.2 Correlation Functions for Quantum Wells

3.2.1 Introduction

A theoretical analysis of velocity fluctuations can yield relevant information

on the microscopic interpretation of transport coefficients as well as on the

detailed features of the scattering sources. This analysis becomes even more

important if submicrometer devices are considered, where ultrafast transport

processes are usually involved and a deeper insight into the physics of transport

phenomena is required. Furthermore fluctuations can play an important role in

- 48-



the design and characterization of the device itself.

Several papers have appeared in the literature on this subject for bulk

materials, while very scarce theoretical investigations have been done so far

in this field for 2D systems, and few experimental data is available for noise

properties in quantum wells.

The theoretical problem can be approached through a unified theory for-

mulated in terms of the autocorrelation function, a quantity directly related to

diffusivity and noise. This method can be used to describe both steady-state

(Sec.3.2.2) and transient (Sec.3.2.3) situations, and also to analyse the different

contributions due to the different physical sources of fluctuations which arise in

the presence of an applied electric field.

In order to obtain results for realistic structures, a Monte Carlo simulation

of the quantum well has been used, that allows to obtain an exact solution of the

transport problem in hot electron conditions (i.e. out of equilibrium, in presence

of high electric fields), where analitical techniques cannot be succesfully applied

without introducing severe approximations. Furthermore, a direct simulafion

of the dynamics of charge carriers inside the crystal enables us to extract any

required physical information while the solution of the transport equation is

being built up and the simulation can be easily modeled in order to reproduce

particular experimental conditions.

The physical system and the details of the Monte Carlo procedure used

for the simulation of the 2D electron gas in the quantum well are presented in

Sec.3.2.4. Results for autocorrelation function, diffusivity, and noise at room

temperature are discussed in Sec. 3.2.5 and 3.2.6 for stationary conditions and

transient conditions, respectively, together with a comparison between 2D and

3D data.

Few syntetic conclusive statements are given in Sec.3.2.7 together with

possible developments of this research for the future.
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3.2.2 Autocorrelation Function, Diffusion and Noise in Stationary Con-

ditions

Let us consider an ensemble of electrons in a crystal semiconductor subject

to an external electric field E and to the action of scattering agents (phonons,irn-

purities, etc). If the electrons have any nonuniform distribution in space the

phenomenon of diffusion occurs, tending to make the concentration uniform

through the spreading out of the carriers.

Diffusion is described, at a phenomenological level, by the equation [3.9]:

= e{n(r)V - an(3.10)

In the above equation e is the electron charge, r is the space position with

components zi, n(r) and J the particle density and current density, respectively,

Dii is the diffusion coefficient tensor (ij=1,2,3, the sum over repeated indices

is implied), Vd the drift velocity of the carriers in absence of diffusion.

If E is applied along a high symmetry direction of a cubic crystal, then

D~i reduces to a diagonal form, with a longitudinal component DI and two

transverse components Dt. In the following we will analize diffusivity and fluc-

tuations along the field direction; consequently we will use a simplified scalar

notation where all the vector quantities are substituted with their longitudinal

components.

For vanishing small electric-field strengths, diffusivity D and mobility ja

are field independent and verify the Einstein relation:

D IAB (3.11)e

where T is the crystal temperature and KB the Boltzmann constant.

At high fields the Einstein relation fails and the study of diffusion is gen-

erally performed through the introduction of a field-dependent D [3.10].
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If the concentration gradients are small, in absence of carrier-carrier inter-

actions D(E) can be obtained from the following equation:

d((x - ())) 2D (3.12)
dt

where x is the displacement along the field direction and brackets represent

ensemble average. The quantity on the right hand side is the second central

moment of the distribution n(r) (SCM); eq.(3.12) is valid at times longer than

both the transient transport time and the time necessary for setting up the

correct space-velocity correlations at the basis of diffusivity effects.

The diffusion phenomenon is strictly related to velocity fluctuations and

noise. The mathematical quantity that describes the common origin of diffusion

and noise is in fact the autocorrelation function of velocity fluctuations, which

carries the information on how large the fluctuations are and how they decay

in time:

C(t) = (6v(r)6v(r + t)) (3.13)

(the mean value in steady state conditions is independent of r). C(t) is related

to the diffusion D through 13.91:

D = dtC(t) (3.14)

Thus D can be evaluated from C(t), which is of interest in itself since it gives

important physical information on the time evolution of the dynamics of the

carriers.

Finally, we introduce the noise spectrum Sv(w):

T" 2

St(w) = lirnT-o,(I o 6v(t)eiW'dtj )(3.15)

Another well-known relation between C(t) and the noise spectrum is given by

the Wiener-Kintchine theorem [3.9]:

Sv(w) = 2 dtC(t)e' w'  (3.16)
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From this last equation and eq. (3.14) extended to non-zero frequencies, we have:

D(w) 1 S( (3.17)
2

Different physical sources contribute to fluctuations and diffusion of carriers in

quantum wells. As it happens in bulk materials, fluctuations in carrier momen-

tum produce the so called "thermal" velocity fluctuations [3.9[; energy fluctua-

tions are associated with "convective" velocity fluctuations and noise [3.111, and

valley fluctuations bring about "intervalley" velocity fluctuations [3.12], when,

as in our case, two or more non equivalent valleys exist. In the case of quantum

wells, however, the existence of several subbands with different average veloci-

ties implies the appearance of a new source of velocity fluctuations and noise,

that is produced by the fluctuation of the subband occupied by the electrons

during their motion in the quantum well. In the following we will refer to these

fluctuations as to "intersubband" velocity fluctuations.

Following a decomposition procedure already applied to bulk structures

[3.13,3.141 let us consider an electron that, at time t, is in a subband o0 type B(t)

and in a valley of type V(t) (the indeces V and B depend on time because carriers

during their motion change both valley and subband because of scattering); let

also VVB(t) be the mean velocity of electrons in valley V and subband B with

energy between e and e + de.

The instantaneous velocity of each electron v(t) can then be written as the

drift velocity plus a number of fluctuating terms:

v(t) = Vd + [VB(t) - Vd] + [vVB(t) - vB(t)] + [vwVB(t) - vvD(t) + [v(t) - VVB(t)]

= Vd + 6VB(t) + ebV(t) + 6bV(t) + 6Vx(t), (3.18)

6VB(t) and 6vv(t) are the fluctuations associated with the drift velocity of the

subband and the valley in which the electron is at time t,respectively; 6v,(t)
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is the velocity fluctuation associated to the fluctuation of electron energy, and

6v.(t) is the velocity fluctuation associated with the fluctuation of the electron

momentum.

By using the definition in Eq.(3.13), the steady-state autocorrelation func-

tion becomes

C(t) = (ve(t')6vj(t' + t)) = E C11(t), (3.19)
'j 'j

where

Ci(t) = (6vi(t')6v,(t' + t)), (3.20)

and ij = B, V, e, k. The total autocorrelation function of velocity fluctuations

contains four " diagonal" contributions Ci,(t) in Eq.(3.19), at the origin of

interband (CBB), intervalley (Cvv), convective (GE), and thermal (Cr,) noise,

respectively. In general, however, off-diagonal terms Cii also contribute to the

autocorrelation of velocity fluctuations [3.13,3.14]. Only when the relaxation

times of the various fluctuating terms have well different values, in calculating

the "off-diagonal" terms one of the two fluctuations can be assumed as constant,

while the other fluctuation averages to zero.

Owing to the linearity of Eqs.(3.14) and (3.16) we can also associate specific

terms contributing to the autocorrelation function with corresponding terms

contributing to difgusivity and Poise, thus making explicit their physical origins.

3.2.3 Autocorrelation Function and Diffusion in Transient Conditions

The diffusion process of a carrier ensemble comes from the particle space-

velocity correlations which arise during the evolution in time of the system.

Starting from an initial condition in which the particle positions and velocities

are totally uncorrelated, the process which occurs during the time necessary for

setting up the correlations will be defined as correlation transient. Furthermore,

when a high electric field is applied at a certain time to the electron ensemble,
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the transport process itself must pass through a transient region which is nec-

essary for attaining the stationary distribution f (k) in k space. This process is

the transport transient.

The definition of the transient diffusion coefficient has been given by a

generalization of Eq. (3.12) to arbitrary small times [3.15-3.17]:

D~t ) = I d ([z(t) _ (z~t))j2), (3.21)

where z(t) is the space position of a carrier at time t along the z direction

parallel to Vd.

This generalization can be put in an equivalent form in terms of the two-

time transient autocorrelation function. If there is no correlation between the

initial positions and velocities of the particles we have [3.16]:

D(t) j drCt(r), (3.22)

with

Ct(r) = (6v(t)6v(t - r)), 0 < r < t (3.23)

Eq.(3.22) reduces to Eq.(3.14) in steady-state conditions (t -- cc).

By comparing these two equations,we see that in transient cases (i) the inte-

gration interval ranges from t=O (initial conditions) up to t (observation time);

(ii) the au ocorrelation function to be integrated in the transient analysis is not

time independent; it is given by the specific ensemble average at a particular

time, and its shape provides information about the transport transient.

3.2.4. The Physical System and The Monte Carlo Procedure

Electrons are simulated in a square well representing the effective 1D po-

tential arising from the band offset between GaAs and A1.GaAs (x=.23). The

solutions of the wave equation for this potential give rise to a series of 2D sub-

bands which are used in calculating the scattering rates for electronic motion
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parallel to the well, modeled using an Ensemble Monte Carlo simulation. We

treat both intra- and intersubband scattering of the 2D electrons by bulk lon-

gitudinal optical phonons; intervalley scattering to the satellite L-valleys is also

included. Details of the physical model and of the Monte Carlo code for the

quantum well can be found in Refs.3.18 and 3.19.

From the time evolution of the electron ensemble, we calculate the sec-

ond central moment of the carrier displacement as a function of time and the

transient autocorrelation function Ct(r) [3.14]. The transient diffusion coeffi-

cient can be evaluated from them in two independent ways using eq.(3.21) and

eq.(3.22).

The analysis of the various contributions to the stationary autocorrelation

function requires a previous MC evaluation of the mean velocities in eq.(3.18).

The stationary diffusion coefficient is determined both from the SCM following

eq.(3.12) and from the ACF using eq.(3.14). The stationary noise spectral

density is evaluated through eq.(3.16).

In order to compare 2D results with 3D results an Ensemble Monte Carlo

program for bulk GaAs has also been used [3.141. The physical model for

GaAs includes the same intravalley and intervalley scattering sources as the

2D program, and the input parameters of the material have been consistently

chosen.

3.2.5 Results for Stationary Conditions

Results have been obtained at 300 K for a 100 A. well for different applied

electric fields. Fig.3.4 and Fig.3.5 report the longitudinal diffusion coefficient

and the drift velocity of electrons as functions of field strength for both the 2D

system and bulk GaAs. The absence of dissipative scattering mechanisms below

the optical phonon energy does not permit the simulation of ohmic conditions.

However the extrapolation to the low-field limit of the data for Vd and D satisfies
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the Einstein relation within the Monte Carlo accuracy.

The ohmic mobility in the two cases is not significantly different because

the 2D polar optical scattering rate is very close to the same curve for 3D.

Consequently the equilibrium D is also close for 2D and 3D.

Negative differential mobility is present in both curves, and the threshold

field for electron transfer to the upper valley and bands in 2D is lower than

in 3D. At room temperature, for fields lower than the threshold, the dominant

scattering is essentially given by intravalley polar optical interaction. When

the electron energy is high enough to allow transfer to upper valleys and upper

subbands mobility decreases with field.

The diffusion coefficient is found to decrease monotonically in both cases

at increasing fields. At low and intermediate fields D is larger in 2D than in 3D

because carrier random velocities are larger in the quantum well than in 3D. At

higher fields the difference between 2D and 3D is reduced and finally it disap-

pears when the electron energy is high enough to guarantee full randomization

of electron paths in k space.

Our results differ from the theoretical data of van Rheenen et al. [3.20,3.211,

who found large difference between 2D and 3D results for both drift velocity and

diffusivity vs. field, while the present Monte Carlo data seem to show better

agreement with experiments [3.21], even though a direct comparison would

require the knowledge of accurate values of both experimental and theoretical

low-field diffusivity.

As a further confirmation of the above interpretation, Fig. 3.7 shows the

normalized ACF of velocity fluctuations as a function of time for E=2,6,10

kV/cm for the 2D case. A negative tail is present at 6 and 10 kV/cm which is

due to the dynamical effect of the transfer back and forth from upper valleys.

Furthermore the time necessary to cancel the correlations between velocity fluc-

tuations is larger at fields close to the threshold field, and then it decreases at
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increasing fields.

A comparison of the data at 10 kV/cm with the 3D data at the same field

reported in Ref.3.14 shows that the decay time of the ACF is slightly shorter

in the 2D case. The presence of different subbands in fact tends to destroy

the strong correlation which sets in at fields above threshold for upper-valley

transfer between large positive k values (before intervalley transfer), and large

negative k values (after intervalley transfer) [3.221.

Fig. 3.8 shows the ACF of velocity fluctuations and the different diagonal

contributions, as analysed in Sec. 2.2.2, for E=7 kV/cm. Within this analysis

it is seen that the thermal fluctuations are in this conditions, much larger than

the other fluctuations, like it happens in bulk GaAs [3.14], owing to the high

electron energy, and they practically determine the value of the autocorrelation

function at short times .

The diagonal terms C,, and Cvv are smaller for an order of magnitude.

They are almost equal in value at short times, but the intervalley term slowly

decays to zero in about 3 ps, while the convective term vanishes in less than

1 ps. The intervalley term is responsible for the long-time tail of the total

autocorrelation function.

We can notice that the decay time of CkA is longer than the decay time of

C,,; this fact is related again to the strong correlation between k values above

threshold discussed above, that is peculiar of polar materials.

The new term CBB not present in 3D system is negligible in these con-

ditions because the drift velocities in different subbands are very close to each

other. We expect to see an appreciable contribution only when the 1D levels

are well separated in energy. Finally we can say that the overall contribution

of off-diagonal terms Cq is also negligible due to the difference in characteristic

decay times associated to the different sources of fluctuation (0.6 ps for C , 1.8

ps for Ckk, 2.5 ps for Cvv).
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Fig.3.9 shows the power spectral density of velocity fluctuations as a func-

tion of frequency at E=2,5, and 10 ky/cm. This quantity e-xibits the same

qualitative behaviour of the 3D case [3.14]. The bump at frequencies around

103 GHz is due to the presence of the negative part in the ACF. The maximum

is shifted towards higher frequencies as the field increases because the negative

correlations appear at shorter times the higher the field.

3.2.6 Results for Transient Conditions

Fig.3.10 shows the transient ACF Cc(dr) as evaluated from the Monte Carlo

simulation using eq.(3.23) for E=7 kV/cm at different times t. The evolution

in time of the shape of this curve allows us to verify directly how the scattering

agents act during the very transient evolution of the system.

The first curve at t= 0.5 ps shows a very large negative part at r between

.3 and .5 ps. At these short times the strong negative correlation of the values

of electron wavevector due to the cycling motion in k space between central

and upper valley is setting in. At longer times it is smoothed down bccause

electrons progressively visit larger zones of k space.

At intermediate observation times (t=2,3 ps) this correlation becomes, at

the longest r's, even positive before stabilizing approximately over the steady-

state value at t=4 ps.

The initial values of the transient ACF at very low r's first increase because

of the initial overshoot in carrier velocity at observation times of .5 and 1 ps,

and then they decrease monotonically towards the steady- state value.

Fig.3.11 shows the transient diffusion coefficient as a function of time for

the same fields of Fig. 3.7. For the lowest field (E=2 kV/cm) below threshold

for intervalley transfer D reaches monotonically the steady-state value. At 5

and 10 kV/cm D first increases rapidly, then it decreases to values lower than

the steady-state value, and finally it reaches the stationary value. In 3D GaAs
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D is foulid to be even iiegative becausa of the same effect, i.e. the electron cloud

after a, first initia! spread, for r. short time shrinks, and then it is blown around

again. This peculiar behaviour of polar materials is related to the decrease in

* velocity during the tran~sient, when the electron cloud begins the transfer to

upper valleys and band.

In 2D systems the presence of upper 3ubbands seems to smooth the strong

negative correlation of the dynamical picture described above, and D is always

found positive.

Finally Fig.3.12 shows the transient evolution of the diffusion coefficient for

two different carrier initial conditions. Curve (a) describes carriers starting from

an equilibrium thermal distribution in the central valley of the lower subband,

while curve (b) corresponds to an initial monoenergetic carrier distributicn in

the upper valley of the second subband, with energy much larger than both

equilibrium and steady-state mean energy, that may roughly describe the initial

condition of optically excited carriers.

From the comparison of the two cases it can be seen that the overshoot

of D is strongly enhanced in the second case (for about a factor 3), but the

undershoot is not strongly changed in value, even though the minimum is shifted

at longer times. Even in this case transient D is never found negative.

In summary, a theoretical analysis of velocity fluctuations in GaAs-AlGaAs

quantum wells both in steady-state and in transient conditions has been per-

formed. Different contributions to velocity fluctuations and diffusion are anal-

ysed separately in a 2D system and, in particular, the contribution of inter-

subband fluctuations, a new source not present in bulk system, is estimated.

This study allows to acquire a deeper insight into the microscopic details of the

transport picture in these structures.

A theoretical analysis of the transient properties of fluctuations and dif-

fusiviLy of electrons in quantum wells is presented for the first time . Results
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show that the transient features are strongly dependent on initial conditions,

and that, for initial hot carrier distributions, D can be three times larger than

for the case of equilibrium distributions. These results are important particu-

larly in connection with the realization of submicrometer devices, for which the

transit time can be comparable with the time required to attain steady-state

conditions, and the distance travelled by carriers during the transient can be a

significative portion of the device length.

This analysis will be extended in the future to quantum wells of different

depths, and to more realistic models including real-space transfer, electron-

electron and electron-hole interactions.
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Figure Captions

Fig. 3.1 - Normalized correlation functions as a function of time for the case

of electrons in Si at T = 300 K and E = 10 kV/cm. Continuous and dashed

curves refer to present theory and Monte Carlo calculations, respectively.

Fig. 3.2 - The same as Fig. 3.1 for the case of "streaming motion regime"

Fig. 3.3 - Set of aci coefficients as a function of the electric ElAd for the case of

quasi elastic regime.

Fig. 3.4 - Excess no:se temperature as a function of the electric field in Si at T

= 300 K. The points refer to experiments of Ref. [3.8] and the curve to present

theory. The error bars indicate the uncertainty of the calculations.

Fig. 3.5 - Longitudinal diffusion coefficient as a function of field strength for

2D and 3D cases. Horizontal lines indicate equilibrium values for the two cases.

Fig. 3.6 - Drift velocity as a function of field strength for bulk GaAs and the

2D quantum well at room temperature.

Fig. 3.7 - 2D autocorrelation function of velocity fluctuations as a function of

time for E=2,6, and 10 kV/cm.

Fig. 3.8 - Autocorrelation function of velocity fluctuations at 7 kV/cm and its

diagonal associated terms as functions of time for the 2D case (see text) .

Fig. 3.9 - Power spectral density of velocity fluctuations as a function of fre-

quency at room temperature for E=2,5 and 10 kV/cm for the 2D case.

Fig. 3.10 - Transient autocorrelation function of velocity fluctuations for the

2D system as a function of r evaluated at different times t indicated by the

numbers on each curve.

Fig. 3.11 - Transient diffusion coefficient as a function of time for the 2D system
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at the same fields shown in Fig.3. Electrons are at t=O in equilibrium conditions.

Fig. 3.12 - Transient diffusion coefficient as a function of time for the 2D system.

a) refers to equilibrium initial condiiULb, b), r...rz to an in.. I monoenergetic

carrier distribution at 103 K.
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4. MONTE CARLO STUDIES OF NON-EQUILIBRIUM PHONON
EFFECTS

4.1 Introduction

In the presence of strong external perturbations (laser excitation, applied

electric fields), the energy transfered to a semiconductors drives the carrier

system out of equilibrium. Such a situation is usually referred to as hot car-

rier condition. If the main dissipation channel for the carriers is via phonon

emission, then a non equilibrium (hot) phonon population can be found as a

result of the energy transfer to the lattice. The presence of phonon amplifi-

cations will ultimately depend on the rate at which carriers supply energy to

the phonons compared to the rate at which the phonons dissipate their excess

energy to the thermal bath. The flux of energy in and out of the carrier system

is schematically shown in Fig. 4.1. In general, both type of carriers (electrons

and holes) can be present, and channels for energy exchange are provided by

their mutual interaction, as well as by their interaction with the lattice. While

Raman measurements have been able to detect hot phonon distributions for the

case of picosecond and subpicosecond excitations, only indirect and non con-

clusive evidences exist today on the possibility for the phonon disturbaces to

feed back into the carrier systems and modify the overall energy transfer pro-

cess. As the framework of semiclassical transport theory is well suited for the

description of the transient dynamics of coupled nonequilibrium carrier-phonon

systems, almost all theoretical work on hot phonons has hitherto considered the

Boltzmann equation for the phonons with simplifying assumptions about the

functional shape of the carrier distributions. The purpose of the present contri-

bution is to circumvent such assumptions by directly solving the coupled Boltz-

mann equations for phonons and carriers by a Monte Carlo simulation. The

advantages of the Monte Carlo technique are that it provides a very accurate
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microscopic description of the physical processes, and it does not require any

assumption on the electron nor on the phonon distribution functions. Further-

more, a direct evaluation of the characteristic times for the various scattering

mechanisms involved in the interaction process is possible. The dynamics of the

carrier-phonon system can be extremely complex. For instance, in the case of

laser excitation in GaAs, six types of interacting carriers (r, L and X electrons,

light, heavy, and split-off holes) might be present. Depending on the range

of excited densities and on the lattice temperature, different scattering mecha-

nisms can be of importance. Phenomena such as screening of the carrier-phonon

interaction, carrier-carrier scattering are thought to dominate the dissipation

process at high carrier concentration. Further complications might arise also

as a result of plasmon-phonon coupling. It is clear that an exact theoretical

treatment of such a system is today out of range, althought a big effort is spent

in this direction. On the other side, experimental measurements usually give an

integrated view that might not allow to isolate the effects of specific phenom-

ena. With this in mind, the present chapter will outline in Sec. 4.2 some of the

theoretical approaches that have been pursued, together with the details of the

Monte Carlo algorithm. The application of the Monte Carlo procedure to the

case of laser excitation in bulk GaAs and GaAs/AIGaAs quantum wells will be

discussed in Sec. 4.3. Throughout the chapter, the Monte Carlo analysis will

only be limited to situations in which the adopted physical model is justified.

4.2 The Transport Model and the Monte Carlo algorithm

The dynamical evolution of the carrier phonon system can be adeguately

described by the coupled Boltzmann equations:

df df i df df d i
- -(4.1)
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dNq dN l (42)
dt dtl h- +  dtI i-(4

where f and Nq are respectively the carrier and the phonon distribution func-

tions. In the following, only electrons will be considered. Such an assumption

is justified as long as the carrier densities are not too high, so that no effi-

cient coupling exist between electrons and holes (electron concentrations always

lower than 5 x 1017 cm-
3 will be dealt with in the paper). In the same spirit,

unscreened electron-phonon interaction will be treated. The time-dependent

transport equations for carriers and phonons are coupled through the occurence

in the carrier-phonon collision integrals of both carrier and phonon distribution

functions [4.1]. A decisive simplification of the phonon equation comes from the

possibility to use a relaxation time for the phonon-phonon interactions, in the

form:
dN(q) - N(q) - ,(43)

dt ph-ph lop '

where is N is the thermal Plank distribution

NL = (Ce -TL - (4.4)

The relaxation time approximation is justified by the fact that the phonon-

phonon interactions are dominated by the decay of the LO phonons into pairs

of electronically non active phonons from zone-boundary modes. values of the

phonon lifetime rop are generally of the order of 10 ps, with a weak temperature

dependence [4.21.

Time-resolved phonon spectroscopy has yield a rather wide range of values

for r, between 7 ps [4.31 and 28 ps [4.4]. The reason for this spread of experi-

mentally determined LO phonon lifetimes seems to have two sources. Firstly,

the quality of the sample surface can strongly influence the decay dynamics

within the thin light-absorption layer [4.5]. Secondly, the decay rate of a non

thermal phonon population might contain strong contributions from the reab-

sorption by the photogenerated carriers of the initially excited phonons. This
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point will be discussed in detail later. Our choice of r equal to 7 ps at 77 K and

3.5 at 300 K is in agreement with the most recent experimental results [4.6,4.71.

Several theoretical approaches have been presented in the literature for the so-

lution of Eqs. 4.1 and 4.2. Details about the various methods can be found

in the references. Certainly one of the most interesting one is due to Collet

and Amand [4.81 who directly solved the coupled transport equations through

a discretization in q-space and in time to obtain the evolution of the carrier

and phonon distributions and of the mean e-h plasma energy during and after

80 femtosecond laser excitation pulses of varying intensity. Another method,

called the heated and drifted Maxwellian (HDM) model, is of particular interest

here since it originated the Monte Carlo investigation of phonon perturbation.

In the HDM approach, the carriers are assumed to be characterized by a heated

and drifted Maxwellian distribution. In the first attempt to use a Monte Carlo

technique in the study of phonon perturbations, it was assumed that the per-

turbed distribution function for acoustic phonons of wavevector q was given by

the asymptotic steady-state solution Nq of the phonon Boltzmann equation in

the presence of a HDM carrier distribution

-rq = NegC + NL9ph (4.5)
ge + Uph

where
w r _q 

- hq) 
(4.6)

a Planck distribution, heated to a carrier temperature T, and shifted about

vd. In Eq. (4.5), g, and 9ph are respectively the inverse relaxation time for

electronic and non electronic phonon transitions. At a given temperature Rq

depends basically on three physical parameters which describe the ensemble of

the carriers, i.e.: the concentration n,, the mean drift velocity vd and the tem-

perature T, of the carriers. These parameters contribute in differ.nt ways to the
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determination of NRq. An increase in n, will lead to an increase of the phonon

perturbation. Moreover an increase of vd will increase the phonon perturbation

for modes with wavectors within the forward-cone around yd. An increase of

T. results in an overall increase of Sq. Finally, lower lattice temperatures, via

Eq.(4.5), also favour the phonon perturbation. To evaluate the effects of the

phonon perturbation on the semiconductor transport properties, an iterative

scheme was used. Starting a MC simulation with the equilibrium phonon dis-

tribution, the values of the carrier mean energy < c > and drift velocity vd

were determined and substitute in Eq. (4.1) to obtain the perturbed phonon

distribution. The new scattering rates, accounting for the phonon perturbation,

were then calculated numerically and the MC algorithm repeated until conver-

gence was achieved. A semiconductor model parameterized for the case of holes

in Ge was used. The effect of the phonon disturbance leads to an increase of

both vi and < e > at low fields and to a decrease of these quantities at higher

fields. The reason of this behavior is associated with the competing roles of the

anisotropic and of the isotropic contribution to the phonon amplification. When

the anisotropic aspect prevails, the phonon-gas drags the carriers whose drift

velocity and mean energy increase above their unperturbed value (directional

effect of the phonons). When, on the contrary, the net isotropic amplification

dominates, the phonon gas most effectively randomizes the motion of the car-

riers; therefore Vd and < e > are reduced with respect to their unperturbed

values.

Fig. 4.2 shows the drift velocity and mean energy as functions of the

applied electric field at 4.2 K with and without phonon perturbation.

The method just described was still lacking consistency, since it relied

on the assumption of a HDM electron distribution. A full consistent Monte

Carlo simulation was developed for the case of photoexcitation in GaAs. The

novel procedure allows to follow the time evolution of the phonon distribution.
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Preliminary results have been presented in [4.9].

A two-valley (r and L ) model is used for GaAs (under the conditions con-

sidered here X valleys do not contribute significantly). The following scattering

mechanisms are considered:

- acoustic phonons with deformation potential coupling (D4 = 7eV), treated

exactly according to the procedure given in [4.101;

- polar optical phonons, without screening;

- ionized imputities, treated in the Conwell-Weisskopf formalism;

- intervalley r --* L phonons (Di. = 8xlOIeV/cm); Throughout the paper,

nominally undoped materials (with a residual impurity concentration of 10'

cm 3) will be considered.

- electron-electron interaction between r-valley electrons have been included

using the algorithm presented in Ref. 4.11. There, it was also shown that at

the low injection densities examined in the present work (typically 5xI0 16 cM 3)

the effect of the carrier-carrier scattering is negligible.

The laser excitation is reproduced by adding particles to the simulation,

distributed in time as the lineshape of the laser pulse, as shown in the insert of

Fig. 4.3. The simulation is subdivided in time intervals At (with At typically

much shorter than the average scattering time for the LO phonon scattering).

At time T = jAt, the number of Monte Carlo electrons is updated from the

previous step according to the espression:

N(T) = N(T - At) + C At cosh-1 (wT), (4.7)

where w and C are parameters related to the width and power of the laser pulse.

Electrons are excited in the conduction band centered around a given en-

ergy Eiq, with & small broadening depending on the width of the laser pulse.

Since the excitation energies considered here are below the threshold for in-

tervalley scattering (0.3 eV for r to L transitions), there is here no significant
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transfer to the satellite valleys.

The LO-phonon distribution function is followed in its time evolution,

and phonon-induced modificatios to the relaxation rates of the electrons are

considered. The disturbances of other types of phonons are negligible in the

situation examined here. In a finite difference scheme, Eq. (4.2) for the phonon

evolution can be written in the form:

Nq(nAt) = Nq((n - 1)At) + 6Nq(nAt)_
(4.8)

-- (Nq(nAt) - N) ; n=1,2,3...
rph

The procedure set up to account for the LO-phonon disturbances has the fol-

lowing features:

i) the time evolution of the LO-phonon distribution Nq is calculated as a func-

tion of wavevector q from the Monte Carlo simulation , by setting up a his-

togram hq defined over a grid in q-space of mesh size Aq. After each scattering

event involving an LO phonon, the histogram is updated. In the absence of

external d.c. fields, because of the full spherical symmetry only the amplitude

of q is relevant, thus reducing the complexity and the storage requirements

of the simulation. Preliminary results for the field dependent case have been

presented recently [4.121.

ii) At fixed times T = jAt during the simulation, N. is calculated as

N '(jAt) = q(jAt) + [lVq(jAt) -No] (4.9)

Here, No is the equilibrium Bose distribution and

q(j At) = Nq((j - 1)At) + AAhq. (4.10)

The term A Ah. gives the dynamical contribution of the electronic processes to
the phonon distribution during the time step At. There, A is a ,ormalization
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factor accounting for the density of states in q -space and for the concentration

of excited electrons, given by

27r n
A- qA--N (4.11)

where n is the electron concentration and N the number of simulated particles.

The second term on the right hand side of Eq. (4.9) accounts for the phonon-

phonon processes. The algorithm for the phonon counting can be viewed as a

hybrid Monte Carlo solution of the phonon Boltzmann equation within a finite

difference scheme.

iWi) to account for the modifications induced by the phonon disturbance on the

rate of electron-phonon scatterings, the integrated scattering probabilities for

LO-phonons are calculated and tabulated at the beginning of the simulation

using an artificially high value Nm,. for the phonon distribution. The choice of

the final state of each scattering process involving an LO phonon is made using a

rejection technique which compares the actual value of the differential scattering

rate with the maximized one. In this way, we are able to discriminate between

the scatterings that can be attributed to the enhanced phonon distribution

versus those induced by the initial maximization ( which are treated as self-

scatterings in the simulation). In order to reduce the number of self scattering

events , it is possible to recalculate the scattering rates at fixed times during

the simulation. A numerical integration over the perturbed phonon distribution

function gives the exact scattering rates at a given time, which can be used

directly on the simulation.

The suggested procedure is a full Monte Carlo simulation of the dynamics

of an interacting electron-phonon gas within the finite difference scheme indi-

cated above, free of adjustable parameters. In the next section, the results of

the Monte Carlo simulation in the presence of laser excitation will be presented.

The application of the algorithm in the precence of an applied electric field will
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be presented in a separate contribution. In that case, a two dimensional grid is

used to describe the perturbed diribution.

4.3 Applications

The question of possible effects of nonequilibrium optical phonon distri-

butions on the dynamics of optically excited charge carriers in semiconduc-

tors is becoming a widely investigated and debated topic. The main scientific

motivation came from the rapid development of picosecond and subpicosecond

laser spectroscopy, which allows to study even the fastest relaxation phenomena

in solids and thereby also some fundamental hot carrier-hot phonon processes

which might ultimately limit the switching efficiencies of ultrafast electronic

devices. The algorithm described in the previous section has been applied to

various situations to study the dynamics of the LO phonon, of the electron

distributions, and their mutual effects. The time evolution of the perturbed

phonon distribution is shown in Fig. 4.3 for an excited carrier density of 5x1016

cm 51. Electrons are excited at 0.25 eV above the bottom of the conduction

band, corresponding to a photon energy of 1.8 eV. The lattice temperature is

77 K. The lineshape of the laser pulse is shown in the insert (halfwidth = 0.8

ps). The LO distribution is driven out of equilibrium even during the excitation,

due to the fast power dissipation of the high-energy photoexcited electrons. The

maximum is reached at a delay time of 1 picosecond for wavevectors of about

6x105 cm 1. The small q values that are amplified during and immediately

after the excitation are due to the polar nature of the e-phonon coupling. At

longer times, the phonon distribution relaxes towards its equilibrium value as a

result of two distinct processes, phonon reabsorption and phonon-phonon inter-

action. The first one is due to the fact that the group velocity of optical phonons

is very small (less than 10sem/a), implying that the phonons c-%nnot drift away
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of the excitation volume during their lifetime. Therefore, if the phonon lifetime

is long enough and the coupling with the carriers sufficiently strong, emitted

phonons can be reabsorbed.

It is important to notice that modes of different wavevector evolve in

time in different ways, as indicated in Fig. 4.4 . Those with the smaller q

(6x10 5 cm-') exhibit an exponential decay, immediately after the end of the

excitation, with a characteristic decay time of 7 ps. At intermediate q's (8 and

iOxiOs cm- 1) the phonon distribution decay much faster at short times (up to 5

and 8 ps delay), approaching then the exponential behavior. The amplification

of these large-q phonons is not as pronounced as that of the small-q ones.

The time evolution of the phonon distribution reflects the microscopic de-

tails of the cooling processes in the coupled electron-phonon system. While

phonon-phonon processes are always active, and their effect is independent of

wavevector, phonon reabsorption varies drastically as a function of time and

wavevector. In fact, the very rapid changes in the electron distribution func-

tion (that will be examine below) modify the range of phonon transitions that

are allowed by energy and momentum conservation. Fig. 4.5 shows the mini-

mum q for LO-phonon absorption and emission as a function of electron energy

in a parabolic band. At high energy, electrons can emit phonons with very small

q, but as they cool the minimum allowed q shifts at higher values. Such a shift

appears in Fig. 4.3, hidden though by the strong initial amplification. Further-

more, an electron will not be able to reabsorb the earlier emitted phonons once

it goes below a certain energy.

This simple analysis explains why the phonons with small q-vector excited

during the first stages of the electron relaxation (up to 2 ps delay time) cannot

be reabsorbed, and decay exponentially via non-electronic processes.

On the other side, both the reabsorption and the phonon-?honon terms

will contribute to the damping of phonons of larger wavevector in the first few
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picoseconds, leading to their faster decay over this time interval.

The modification of the scattering rates for the electron-LO phonon in-

teraction due to the phonon perturbation is presented in Fig. 4.6. There the

total scattering rates for absorption and emission, obtained from a numerical

integration over the perturbed distribution function N., are plotted at different

time delays after the end of the laser pulse. Since at low temperature the value

of the equilibrium phonon distribution is much smaller than unity, the emission

probability is a few orders of magnitude higher than the absorption one. As

the phonon population grows out of equilibrium, the absorption rate increases

dramatically, relatively much faster than the emision one. The changes of the

scattering rate with time reflect the temporal evolution of the phonon popu-

lation. It is important to notice that even a few picoseconds after the pulse,

a significant amount of phonons is still present and a considerable number of

phonon reabsorptions are detected.

The time evolution of the electron distributiou function, shown in Fig.

4.7, completes the previous analysis of the phonon amplification. The distinct

peaks in the distributions at short time delays (0 and 1 ps) are due mainly to

LO phonon emission which sets up already during the laser pulse (an average

time of 160 fs for the emission of an LO phonon by electrons at the excitation

energy is calculated from the simulation). At a time delay of 4 ps, the electrons

mainly populate the low energy region below 100 meV. Many of them have an

energy below the threshold for LO phonon emission. It will be seen later that

in this case reabsorption can become very important.

As a last remark on the phonon dynamics, it is important to compare the

previous considerations with the experimental results of Raman spectroscopy.

The shaded area in Fig. 4.5 indicates the range of raman-active wavevectors for

the data given in Refs. [4.6,4.13].The Monte Carlo result for those modes (curve

x in Fig. 4.4) are in good qualitative agreement with the findings of Kash et
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al. 4.61, obtained for the same electron concentration but a higher excitation

energy.

The effect of the phonon perturbation on the cooling of the photoexcited

electrons is shown in Fig. 4.8. The electron relaxation rate is drastically reduced

because of the presence of non-equilibrium phonons. The phenomenon is mainly

due to the reabsorption of the LO phonons that have been emitted in the first

stage of the relaxation without having had enough time to decay. The effect of

phonon reabsorption grows with time as the electrons populate the low energy

regions below the threshold for optical emission. It has also been found that the

reduction in the cooling rate of the electrons is even larger at higher electron

densities or higher injection levels.

The Monte Carlo algorithm presented here has been compared with the models

of Ref. 4.14 and 4.5. At the low excitation energies used in Ref. 4.15, the

phonon disturbance is reduced with respect to the case shown if Fig. 4.3., and

reaches its maximum at higher q's. The Monte Carlo result agrees quite well

with ones of the more sophisticated model of Collet et al.

The temperature model of Ref. 4.14 assumes that the carriers (electrons

and holes) are characterized by a Fermi-Dirac distribution at any time during

and after the laser pulse, corresponding to a very fast thermalization within

the photogenerated plasma. In order to verify the consistency of our results,

we have performed a simulation by assuming that the carriers are initially dis-

tributed according to a heated maxwellian distribution. The Monte Carlo re-

suits obtained using the same parameters of Fig. 4.3 indicate in this case a

much smaller phonon perturbation, with the maximum of the phonon distri-

bution still reached at 1 picosecond delay time as in Fig. 4.3, but its value

is reduced by a factor two. The reduction of phonon heating is related to the

increased population of the low energy tails of the maxwellian distribution com-

pared to the quasi monoenergetic distribution used before. The Monte Carlo
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results agree very well with those of the temperature model, for a one compo-

nent system. When both electrons and holes are considered, the temperature

model (which assumes the same temperature for both carriers) shows a further

reduction of phonon heating, which indicates a strong energy transfer from the

electron to the hole system, which then dissipate mainly via TO emission. Al-

though the latter result depends heavily on the assumptions of the model, it

nevertheless shows that the e-h interaction can be very important. A prelimi-

nary step to combine the effect of e-h scattering and non equilibrium phonons

has been recently presented [4.16]. The results just shown refers to the simple

case of GaAs, where only the central valley is important. In general, especially

if the excitation energy is sufficiently high, the population of the higher val-

leys (L and X) is not negligible. The influence of such effect on the phonon

population can be very strong. Fig. 4.9 shows the minimum q for LO phonon

emission as a function of electron energy for the r (same curve as Fig. 4.4)

and the L valleys. Due to the higher effective mass of the satelite valley, the

emitted LO phonons have a larger wavevector. Since the area of phase-space is

increased, their contribution to the phonc- population will be reduced. This is

illustrated in Fig. 4.10, where an initial electron energy of 0.5 eV has been used

(with a r - L separation of 0.3 eV). The parameters of the simulation are the

same as before. After 1 picosecond from the excitation, about 60 percent of the

electrons are found in the L valley. The Monte Carlo hystogram (Fig. 4.10a)

confirms that the emission of LO phonons by L-valley electrons is concentrated

in the large q region. The actual number of phonons reflects indeed the rel-

ative population of the two valleys. Nevertheless, the effect of those phonons

on the perturbed distibution (Fig. 4.10b) is negligible. Furthermore, all of the

L-valley phonon have q values too large to be detected spectroscopically. We

can therefore expect that phonon amplifications experimentally detected would

decrease when a relevant number of intervalley transfers is present.
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Recent results obtained with time resolved photoluminescence have shown

dramatically reduced energy relaxation rates for photo-excited electrons in

GaAs-AIGaAs quantum wells [4.17 , 4.181. It is still an open question whether

the slow cooling rates are due to the presence of non-equilibrium phonons or to

the effect of reduced dimensionality and screening [4.19,4.20]. The algorithm

just presented has been applied to a single quantum well of GaAs-AlGaAs (t.

= 150 A, 4B = 0.28 eV), with subband energies given by the solution of the

one dimensional wave equation for a square well potential. The bands are as-

sumed parabolic. The scattering rates of the quantized 2D electrons with bulk

unscreened LO-phonon (both intra- and intersubband) are calculated numeri-

cally without the use of momentum conserving approximations [4.21]. It has

been shown [4.21] that, for wells larger than 100 A, very little difference exist

from the scattering rates calculated accounting for phonon confinement (slab

modes) and the one obtained using bulk modes. Intervalley transfer to the

L-valleys (also quantized) is included as well. 2D electron-electron scattering

is introduced in the Monte Carlo simulation through a generalization of the

self-scattering technique given in Ref. 4.22 to the multi-subband quantized

system [4.23]. The various electrons are allowed to interact via a statically

screened Coulomb interaction determined by the long wavelength limit of the

two-dimensional Lindhard dielectric function. Degeneracy effects due to the

Pauli exclusion principle are also considered [4.24]. In the present simulation

we have neglected electron-hole scattering and recombination, which might be

of importance in some of the reported experiments.

In order to include non-equilibrium LO phonons in the Monte Carlo sim-

ulation, we generalize to two-dimensional systems the procedure described ear-

lier for bulk GaAs. The phonon distribution is given directly by a detailed

balance of the emission and absorption events during the simulation on a grid

in q-space with the excess LO phonon population in each mode decaying via a

- 79-



phenomenological phonon lifetime of 7 ps. Since no direct measurement of LO

phonon lifetime in quantum well systems is available at this time, the measured

bulk value is used. In 2D, the component of the phonon wavevector in the di-

rection of the well, q2, is not conserved. For a square well, however, it has been

shown that the q, component is very peaked for wavevectors corresponding to

the change in intersubband energy during the transition [4.141. Therefore, the

phonon distribution is tabulated for discrete q. corresponding to the various

inter- and intrasubband events, with the phonon wavevectors otherwise treated

as two-dimensional.

The cooling of photoexcited electrons in an n-type GaAs-AlGaAs quantum

well at low temperature (5 K) has been considered [4.25, 4.26]; A background

density of 2.5x10 11 cm - 2 is used. The injected density is 5x1011 cM- 2 The

GaAs parameters are the same as for the bulk case. The width of the simulated

laser pulse is about 1 ps, during which time carriers are added to the simulation

with an initial energy of 0.25 eV above the bottom of the lowest subband. Fig.

4.11 shows the evolution of the electron total energy (kinetic plus potential) as

a function of time during and after the pulse. The excited electrons lose energy

mainly through the interaction with the background electrons and through the

emission of LO phonons. Without hot phonons, the hot electrons are found to

reach equilibrium in about 3 ps. In contrast with the case of an unperturbed

phonon distribution, a much slower relaxation is found when non-equilibrium

phonons are accounted for. The two cases in Fig. 4.11 correspond to different

quantum wells. It is clear that no real dependence on well width has been found

in the Monte Carlo result. TIhe total electron energy plotted here is calculated as

an ensemble average during the simulation. For degenerate systems, this quntity
can vary considerably from the electron temperature, which can be rigorously

defined only in the presence of a fermi distribution, the elctron temperature

calculated from the average energy , assuming the distribution function is fermi-
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like, (dashed curve) correspond to the slope of the tail of the distribution.

The reduction of the electron cooling rate is due to the reabsorption of non-

equilibrium phonons which build up during the initial pumping and the first

stage of the electron relaxation. This is evidenced by the time evolution of the

phonon distribution at q,=O (intra subband scattering) shown in Fig. 4.12. The

same, although reduced, features are found also at q,=O. LO-phonon emission

during the pulse and immediately after creates a large population of phonons

at small q's. At longer times, phonon reabsorptions and phonon-phonon losses

drive the distribution back to equilibrium. The secondary peak that develops

at later times in the phonon distribution is due to phonon emission by electrons

that have already relaxed to lower energy.

As pointed out before, the reduction in the electron relaxation rate is

mainly due to reabsorption of the emitted LO-phonons. The effect is stronger

when a considerable number of electrons have relaxed to the low energy region

below the emission threshold.

Shortly after the end of the laser pulse (t = 1.6 ps), the strong intercarrier

scattering creates a broad distribution where the subband minima (indicated by

arrows) clearly appear. Within each subband, the distribution function starts

to exhibit a Fermi-like appearance wich is fully established at longer times as

shown in the bottom curve.

4.4 Conclusions

In summary, a full Monte Carlo technique for the study of electron and

phonon dynamics in bulk GaAs and GaAs-AlGaAs quantum wells has been

presented. A strongly perturbed phonon distribution is found in the first pi-

coseconds after the laser pulse, which is responsible for a reduction of the cooling

rate of the photoexited carriers. Good qualitative agreement with Raman data
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1is found.
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Figure Captions

Fig. 4.1 Schemtic representation of the energy flux inside and outside a semi-

conductor.

Fig. 4.2 Drift veiocity and mean energy as functions of the electric field strength

for holes in Go at 4.2 K for the indicated impurity concentration NI. Dashed

(continuous) curves refer to an unperturbed (perturbed) phonon distribution

function.

Fig. 4.3 Non-equilibrium LO phonon distribution functions at three different

delay times as afunction of the phonon wavevector. The insert shows the shape

of the laser puke.

Fig. 4.4 Time evolution of four different modes as a function of delay time.

Fig. 4.5 Energy dependence of the minimum wavevector for absorption and

emission of LO phonons, as a function of energy in a parabolic band. The

shaded are indicates typical raman active phonon wavevectors.

Fig. 4.6 Absorption and emission scattering rates for LO phonons as a function

of energy, at different times after the laser pulse.

Fig. 4.7 Time evolution of the electron distribution function, at different delay

times.

Fig. 4.8 Average electron energy as a function of time with (continuous curve)

and without (dashed curve) hot-phonons.

Fig. 4.9 Energy dependence of the minimum wavevector for absorption and

emission of LO phonons, as a function of energy in a parabolic h~and for r and
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L valley.

Fig. 4.10 Monte Carlo hystogram, and perturbed LO phonon distribution 1 pa.
after the excitation (E1ii = 0.5eV).

Fig. 4.11 Average electron energy as a function of time during and after the
laser excitation for two different excitation densities. The electron temperature
is shown by the dashed line.

Fig. 4.12 LO Phonon distribution as a function of total parallel momentum (for
=0) for times during and after the laser excitation.
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